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Abstract

This document describes the public distribution of the STARLIGHT spectral synthesis code,
version 04, available from www.starlight.ufsc.br.

Figure 1: Five examples of STARLIGHT fits. Left: Observed (black) and fitted (red) spectra, with masked
regions plotted in magenta. Middle: Fraction of light at λ0 = 4020 Å associated to each of the 25 SSP ages
used in the fits, color-coded by the SSP metallicity. Curves represent a 0.5 dex smoothed version of the Star
Formation History. Right: SDSS images. From Asari et al. (2007).
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1 Introduction

STARLIGHT is a Fortran 77 program to fit an observed spectrum Oλ with a model Mλ which adds
up N⋆ spectral components from a pre-defined set of base spectra. The spectral base can be made
up of observed template spectra (eg, Cid Fernandes et al. 2004a), evolutionary synthesis models (eg,
Cid Fernandes et al. 2004b, 2005, 2007; Mateus et al. 2006; Martins 2005; Corbin et al. 2006; Asari
et al. 2007), individual stars (say, for velocity dispersion estimates, as in Garcia-Rissman et al. 2005;
Vega 2004; Barbosa et al. 2006) or whatever else might be relevant for your specific application. So
far, all applications were restricted to the ∼ 3500–9000 Å range, though in principle other ranges
can be tried.

STARLIGHT is by no means the smarter, faster, better or more elegant way of fitting a spectrum.
In fact, its a rather slow, brute-force method with not few limitations, but with a nice virtue:
it works! Excellent results have been achieved for objects as diverse as Low Luminosity AGN,
Seyfert nuclei, normal galaxies (from ellipticals to spirals and extreme cases such as ultra compact
blue dwarf galaxies). You may use it to derive properties of the stellar population mixtures, or
just to produce a stellar-template to aid emission line measurements, or even to estimate velocity
dispersions. STARLIGHT is designed to be as general as possible, which implies a certain degree
of complexity. Even users with experience in population synthesis should take some time to adapt
their data and get it running, so take a deep breath and/or a fresh cup of coffee and read on.

This document tells you how to use STARLIGHT. It is meant as a “not-so-quick”-start guide. Be-
ware that the text is written “upside-down”: We first explain how you should prepare/format
your data and auxiliary files (§4). Then we explain how to run STARLIGHT (§5), and how to
digest its output file (§6). Only in §7 we explain what it actually does and how. Example fits
(using data accompanying this distribution) are shown in §9. Many details are just not covered
here yet, and probably will never be, as by the time we find the time to explain them the code will
be altogether different. . . In any case, judging by the many requests for a version of STARLIGHT,
this distribution should hopefully be useful.

2 Download things & test

Unfortunately we cannot distribute the source code at present, though we plan to do it in the future.
Meanwhile, look up www.starlight.ufsc.br and find a compiled version which will (hopefully) work
for your system. Besides the executable file, download Starlight v04.Distrib.tar.bz2 and unpack it
with

tar xvfj StarlightChains v04.Distrib.tar.bz2

This will create the directory STARLIGHTv04/, where you will work. Notice that it includes a
sub-directory called BasesDir/, which contains some base spectra (§4.3)1 Put the executable file
there too and rename it to StarlightChains v04.exe. ls -l on this dir should give

1More complete versions of this dir can be found in our site.
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-rw-r--r-- 1 cid cid 196098 2006-02-23 19:56 0414.51901.393.cxt

-rw-r--r-- 1 cid cid 236437 2007-04-01 23:01 0414.51901.393.cxt.sc4.C11.im.CAL.BN

-rw-r--r-- 1 cid cid 278017 2007-04-01 23:14 0414.51901.393.cxt.sc4.C11.im.CAL.BS

-rw-r--r-- 1 cid cid 236437 2007-04-01 22:58 0414.51901.393.cxt.sc4.C11.im.CCM.BN

-rw-r--r-- 1 cid cid 278017 2007-04-01 23:38 0414.51901.393.cxt.sc4.C11.im.CCM.BS

-rw-r--r-- 1 cid cid 187909 2006-01-19 15:57 0784.52327.478.cxt

-rw-r--r-- 1 cid cid 236437 2007-04-01 23:02 0784.52327.478.cxt.sc4.C11.im.CAL.BN

-rw-r--r-- 1 cid cid 278017 2007-04-01 23:23 0784.52327.478.cxt.sc4.C11.im.CAL.BS

-rw-r--r-- 1 cid cid 236437 2007-04-01 22:59 0784.52327.478.cxt.sc4.C11.im.CCM.BN

-rw-r--r-- 1 cid cid 278017 2007-04-01 23:58 0784.52327.478.cxt.sc4.C11.im.CCM.BS

-rw-r--r-- 1 cid cid 5190 2007-02-10 11:38 Base.BC03.N

-rw-r--r-- 1 cid cid 16530 2007-02-10 11:38 Base.BC03.S

drwxr-xr-x 2 cid cid 8192 2007-02-11 21:53 BasesDir

-rw-r--r-- 1 cid cid 1550 2007-03-30 01:38 grid_example1.in

-rw-r--r-- 1 cid cid 9386 2007-04-01 22:59 grid_example1.log

-rw-r--r-- 1 cid cid 2512 2007-04-01 13:15 grid_example2.in

-rw-r--r-- 1 cid cid 33862 2007-04-01 23:58 grid_example2.log

-rw-r--r-- 1 cid cid 2377 2007-03-30 23:36 grid_example3.in

-rw-r--r-- 1 cid cid 204996 2007-04-02 00:30 grid_example3.log

-rw-r--r-- 1 cid cid 6413 2006-03-03 12:06 Mask.0414.51901.393.cxt.sc1.CRAP.gm.BN

-r--r--r-- 1 cid cid 5861 2006-01-20 16:24 Mask.0784.52327.478.cxt.sc2.CRAP.gm.BN

-rw-r----- 1 cid cid 1254 2004-06-25 15:33 Masks.EmLines.SDSS.gm

-rw-r----- 1 cid cid 45122 2003-12-21 00:18 n5377x.nuc.txt.DR

-rw-r--r-- 1 cid cid 101887 2007-04-02 00:06 n5377x.nuc.txt.DR.sc4.C11.gm.CAL.BN

-rw-r--r-- 1 cid cid 143467 2007-04-02 00:12 n5377x.nuc.txt.DR.sc4.C11.gm.CAL.BS

-rw-r--r-- 1 cid cid 101887 2007-04-01 23:32 n5377x.nuc.txt.DR.sc4.C11.gm.CCM.BN

-rw-r--r-- 1 cid cid 143467 2007-04-01 23:45 n5377x.nuc.txt.DR.sc4.C11.gm.CCM.BS

-rw-r--r-- 1 cid cid 101887 2007-04-02 00:08 n5377x.nuc.txt.DR.sc4.C99.gm.CAL.BN

-rw-r--r-- 1 cid cid 143467 2007-04-02 00:30 n5377x.nuc.txt.DR.sc4.C99.gm.CAL.BS

-rw-r--r-- 1 cid cid 101887 2007-04-01 23:36 n5377x.nuc.txt.DR.sc4.C99.gm.CCM.BN

-rw-r--r-- 1 cid cid 143467 2007-04-02 00:05 n5377x.nuc.txt.DR.sc4.C99.gm.CCM.BS

-rwxr-xr-x 1 cid cid 157138 2007-04-01 22:57 StarlightChains_v04.exe

-rw-r--r-- 1 cid cid 6894 2007-03-29 02:06 StCv04.C11.config

-rw-r--r-- 1 cid cid 6785 2007-02-18 14:43 StCv04.C99.config

To check if things work, edit grid example1.in and adjust the second line to the full path of BasesDir,
eg “/home/arthurdent/STARLIGHTv04/BasesDir/”. On the third to fifth lines, write either ./ or
the full path to the STARLIGHT dir, eg, “/home/arthurdent/STARLIGHTv04/”. Having done
that, type

./StarlightChains v04.exe < grid example1.in

and running messages should start appearing on your screen. (If they don’t it may be because the
executable is not right for your OS, so try another one, or because the full path strings are too long,
like > 70 characters.) Leave it running and read the rest to find out what you have just done.

3 Conditions of use

STARLIGHT is completely free. We do not require co-authorship in papers nor anything like that,
except, of course, for a citation to at least paper describing the public distribution

Cid Fernandes, et al 2007; RevMexAA, in prep.

and the original paper

Cid Fernandes, R.; Mateus, A.; Sodré, L.; Stasińska, G. & Gomes, J. M. 2005, MNRAS,
358, 363
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though, strictly speaking, the version of STARLIGHT you have just downloaded is closer to that
described in

Mateus, A.; Sodré, L.; Cid Fernandes, R.; Stasińska, G.; Schoenell, W. & Gomes, J. M.
2006, MNRAS, 370, 721

and

Asari, N. V.; Cid Fernandes, R.; Stasińska, G.; Torres-Papaqui, J. P.; Mateus, A.;
Sodré, L. & Schoenell, W. 2007, MNRAS, submitted.

so you might want to cite that too. Have a look at the Publications link on www.starlight.ufsc.br
for more refs. The BAA49 and IAU241 proceedings papers are reasonably didactic, and may be
helpful for beginners.

An acknowledgment to our sponsors would also be appreciated:

The STARLIGHT project is supported by the Brazilian agencies CNPq, CAPES and
FAPESP and by the France-Brazil CAPES/Cofecub program.

STARLIGHT is completely free, but . . . we invite users who have access to decent Linux-machines
or clusters to consider the possibility of offering us access to run extensive grids, like the whole
SDSS with several different setups (which entails ∼ 107 fits, or ∼ 100 yr in a single CPU!). We
always run things with the lowest priority (nice -n19), minimizing interference with other people’s
work, and in a highly automated fashion, grabbing data from our server, running it, sending it
back and cleaning the space. The results of such runs will be made public in a VO-environment,
so that people can play with, say, the Star Formation History of hundreds of thousands of galaxies
modeled in different ways. As of the time of writing, at www.starlight.ufsc.br you can already access
results for over half a million SDSS galaxies fitted with the Bruzual & Charlot (2003) models, 5
of which are illustrated in Fig. 1. This database, to be fully described in Schoennel et al. 2007,
RevMexAA, in prep, is undergoing revision, reorganization and redocumentation, but you are
welcome to play with it an send us opinions. We emphasize that granting access to your CPUs is
by no means a necessary condition for you to use STARLIGHT.

Unfortunately, we do not have the (wo)man-power to offer efficient trouble-shooting help, so do not
expect quick replies to emails, but send them anyway. We’ll do our best to help.

4 Input data & auxiliary files

To use STARLIGHT you must provide:

1. an input spectrum, “arq obs” (§4.1);

2. a masks file, “arq masks” (§4.2);
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3. a base master-file (“arq base”) and N⋆ associated base spectra (§4.3);

4. a configuration file, “arq config” (§4.4);

5. a grid file (§4.5).

This section describes each of these. At the end of each subsection we describe the example files
provided, whose names are in red throughout this document. Have a look at the example files while
reading what they contain. As explained in §4.5, the input spectrum, mask and output files may
be stored in different directories, specified in the grid file.

OBS: Here is a little incentive to double your attention while reading the next pages: Experience
shows that badly formatted files or inconsistent input information is the most common problem
faced by STARLIGHT users. In some cases STARLIGHT will detect what the problem is and
complain, but in most cases you are on your own.

4.1 Input spectrum

Your spectra must be a plain ASCII file formatted as follows: The 1st line may be a header, in
which case it will be skipped. The following lines must contain 4 columns:

λ Oλ eλ flagλ

where λ is the wavelength in Å, Oλ is the flux in your favorite Fλ or Lλ units (e.g., 10−17 erg/s/cm2/Å
or L⊙/Å), eλ is the error in Oλ (in the same units), and flagλ is an integer which signals if that
pixel is good or bad: Pixels with flagλ ≥ 2 will be ignored in the synthesis, i.e, they will be assigned
weight wλ = 0 in the fits (see eq. 15). Good pixels should be signaled with flagλ = 0 or 1. (Another
way to neglect certain pixels in the fit is through the masks file described in §4.2.)

If your 1st line is a header then you should set Is1stLineHeader to 1 in arq config (§4.4), otherwise
set it to 0.

4.1.1 What to do when you do not have eλ & flagλ

Very often one does not have eλ and/or flagλ at hand. If you do not have the error spectrum eλ,
you are encouraged to use your creativity and invent one and plug it in the 3rd column of your
file. Similarly, if you do not have a flag spectrum at hand, you may just fill in 0’s or 1’s in the 4th

column, or create a proper flagλ signalling bad pixels with values ≥ 2.

To skip these error and flag-filling steps, STARLIGHT also accepts spectra in the following formats:

λ Oλ eλ

when you don’t have flagλ, and
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λ Oλ

when neither eλ nor flagλ are available. The grid file (§4.5) has a couple of On/Off switches
(IsFlagSpecAvailable and IsErrSpecAvailable) to inform which of these three formats is to be used.
When you do not provide eλ, STARLIGHT defines one from the rms of Oλ in a “S/N λ-range” also
defined in the grid file (§4.5). Notice that in this case a flat eλ spectrum is assumed. Of course, if
eλ is not a proper error, the χ2 of the fit will not be a proper χ2. This does not prevent you from
achieving a good fit, but try not to err too much. An absurdly small/large eλ, (by, say, a factor
of 1000) may cause numerical problems in the fit. This feature may be handy, but you are still
strongly encouraged to invent a less stupid eλ yourself and plug it in your 3rd column.

OBS 1: STARLIGHT does not accept spectra with flagλ but without eλ. If this is your case, invent
your own eλ plug it in the 3rd column of arq obs.

OBS 2: Make sure the IsFlagSpecAvailable and IsErrSpecAvailable (§4.5) are set correctly. If you
have a λ Oλ spectrum but say that IsFlagSpecAvailable = 1 and/or IsErrSpecAvailable = 1 then
STARLIGHT may suspect something is wrong and issue a warning, but it will not stop!

4.1.2 Pre-processing steps

Before running STARLIGHT, you should:

1. Flux-calibrate your spectrum properly! This version of STARLIGHT cares about the con-
tinuum, so detector response shapes or other artifacts must all be removed from the data.
A future version will deal with rectified spectra2, but until then make sure you feed the code
with calibrated spectra. A decent wavelength calibration is also needed, of course. Absolute
flux calibration is not required unless you want to derive things like the stellar mass (M⋆)
from the spectra alone.

2. Correct Oλ for Galactic extinction. Do not forget to apply this correction in the observed
frame and to propagate it to eλ.

3. Shift the spectrum to its rest-frame (say, using IRAF’s dopcor).

4. Sample Oλ, eλ and flagλ uniformly (say, using IRAF’s dispcor), say, from 3500 to 8000 Å in
steps of ∆λ = 1 Å. We recommend working with integer lambdas spaced by ∆λ = 1 Å (for
instance, 3500, 3501, 3052 . . . 7998, 7999, 8000).

5. Write down your spectral resolution (σinst, in km/s). You’ll need this to correct the output
value of the velocity dispersion σ⋆. STARLIGHT implicitly assumes σinst is the same through-
out the spectrum. If this is a very bad approximation in your case (eg, σinst changes by > σ⋆

across your spectrum) then homogenize σinst(λ) directly in your data somehow.

2There are ways of using this version to deal with rectified spectra, but they are non-trivial and definitely not very
elegant. . .
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4.1.3 Note about sampling

STARLIGHT will re-sample the spectrum from λsyn
ini to λsyn

fin in steps of ∆λsyn. These values are
specified in the grid file (see §4.5). Hence, in principle, the resampling pre-processing step described
above can be skipped. However, the resampling routine is very simple. The error spectrum, in
particular, is resampled as if it were a true spectrum, which is not correct! (For instance, the error
in a ∆λ = 2 Å bin is not the average of the two corresponding eλ’s in a ∆λ = 1 Å spectrum.)

For this and other reasons, it is strongly recommended that you do your resampling in
the pre-processing stage. STARLIGHT will still call its resampling routine, but by using ∆λsyn

equal to the ∆λ of the data you assure that nothing silly is done to eλ. In fact, in this case the
resampling routine will return the exact same data it is fed with (except perhaps for the λ-range),
which is the ideal case. It is also recommended working with integer λ’s spaced by ∆λ = 1 Å. This
is not strictly necessary, but that’s how STARLIGHT has been used most of the time.

The bottom line is that we need a better resampling routine! Until then, follow these recommen-
dations or else cross your fingers and try your luck. . . but don’t complain!

4.1.4 Example input spectra

Example input spectra with all four columns (λ, Oλ, eλ, flagλ) are given in files 0414.51901.393.cxt
and 0784.52327.478.cxt. Both are sampled from 3200 to 9200 Å, in steps of 1 Å. Notice that
some of the Oλ values may be ≤ 0, in which case flagλ ≥ 2 to inform that the data is corrupted.
Here’s a piece of 0784.52327.478.cxt:

3200. 0. 0. 99

3201. 0. 0. 99

3202. 0. 0. 99

...

3538. 21.2845993 0. 14

3539. 21.2874699 0. 14

3540. 21.2907429 0. 12

3541. 21.3282471 2.98489189 0

3542. 18.2889023 2.94670773 0

3543. 17.6351337 2.91834164 0

3544. 16.8361225 2.86408353 0

...

8519. 44.0476036 2.41160035 0

8520. 43.8350258 2.41420412 0

8521. 42.4367447 2.40460205 0

8522. 41.4942436 2.54906344 13

8523. 40.9034348 2.81240392 13

8524. 0. 0. 99

8525. 0. 0. 99

8526. 0. 0. 99

...

9198. 0. 0. 99

9199. 0. 0. 99

9200. 0. 0. 99
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Though the spectrum runs from 3200 to 9200 Å, the first useful (flagλ ≤ 1) pixel is λ = 3541 and
the last is 8521 Å.

A spectrum with just λ and Oλ is given in file n5377x.nuc.txt.DR. In this case the spectrum runs
from 3400 to 5450 Å, also with ∆λ = 1 Å. It is not the case in this file, but in principle some of the
Oλ values may be ≤ 0. In the absence of a flagλ to tell you these are bad pixels, STARLIGHT may
automatically discard such values with the f cut parameter in arq config (see §7.2.5), or with the
clipping options (§7.2.2).

4.2 Mask file

You should examine your spectrum and identify regions which you do not want to model with
STARLIGHT, like emission lines, artifacts and holes in Oλ. This can be done with the flagλ

spectrum, if you have one. Another way to mask out some spectral regions is to write them down
in the mask file arq masks.

The 1st line in arq mask should contain the number of regions to be masked, Nmasks. Then, in each
of the following Nmasks lines, write

λmask
ini λmask

fin wmask
λ

where λmask
ini ≤ λ ≤ λmask

fin is the region to be masked and wλ is the weight to be given to this region.
Use wλ = 0 to ignore the region. Alternatively, you may use this feature to increase/decrease the
weight given to the λmask

ini → λmask
fin range. Normally, wλ = 1/eλ, but if you set wmask

λ = 2 in

arq mask then points between λmask
ini and λmask

fin will be given twice as much weight as normal (i.e,
wλ = 2/eλ, and so forth). I’ve seen cases where the CaII K line is not well fitted unless you give it
a large weight. . . We try to avoid playing this game of “give more weight to things you care more
about”, but sometimes you just can’t resist!3

OBS: You may not need to mask anything, but STARLIGHT still needs a mask file! In this case
just write a one-line mask file with Nmasks = 0.

4.2.1 Example mask files

The file Masks.EmLines.SDSS.gm provides a general mask containing the most notorious optical
emission lines. This is the file we used in our study of 50362 SDSS galaxies in Cid Fernandes et al.
(2005). (In that work we further used the SDSS flagλ spectrum to mask bad pixels.) Here is a piece
of it:

17

3710.0 3744.0 0.0 [OII] 3726+3729 emission line

3For this trick to be effective you should gauge the extra weight given to a window n pixels wide by something
of order n/ntot, such that your special window will have ∼ the same weight as the rest of the spectrum. Also, the
parameter wei nsig threshold (discussed in §7.2.2) should be set to 0 in arq config, otherwise STARLIGHT will
think the weights are suspiciously large and undo your extra weighting.
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3858.0 3880.0 0.0 [NeIII] 3869 emission line

3960.0 3980.0 0.0 Hepsilon 3970 emission line (over CaII H)

4092.0 4112.0 0.0 Hdelta 4102 emission line

...

You may mask the whole λ ≤ 3700 Å blue end of your spectrum adding a line like this:

0.0 3700.0 0.0 Bad data!

and similarly for the red end or eventual gaps/problematic parts of Oλ. This is useful when flagλ

is not available.

In more recent papers (eg, Mateus et al. 2006; Stasinska et al. 2006; Cid Fernandes
et al. 2007; Asari et al. 2007) we have constructed individual masks tailored
to each object. Files Mask.0414.51901.393.cxt.sc1.CRAP.gm.BN and
Mask.0784.52327.478.cxt.sc2.CRAP.gm.BN are examples of individual masks for the input
spectra 0414.51901.393.cxt and 0784.52327.478.cxt, respectively.

OBS: Only Nmasks and the first three columns of lines 2 to Nmasks + 1 are read from these files.
All the rest are comments which you may erase/ignore. Most STARLIGHT files come with such
unnecessary but harmless extras.

4.3 Base files

The base is the essence of your model. It tells STARLIGHT what are the spectra to be linearly
combined when trying to fit your data, so choose them well! Here is how you should organize your
base files.

4.3.1 Base Master file

The base master-file arq base must start with the number of base elements (N⋆) in its 1st line. (N⋆

must be ≤ 300.) The next j = 1 . . . N⋆ lines must contain:

1. Col 1: arq j = the file which contains the spectrum lλj of component j.

2. Col 2: The age tj (in yr) of component j.

3. Col 3: The metallicity Zj of component j. We usually work with the mass-fraction notation
for Z, where Z⊙ = 0.02, but you may choose other system.

4. Col 4: A ≤ 15 characters-long nick-name for component j.

5. Col 5: The fraction f⋆,j of the initial stellar mass which is still in stars at age tj for component
j (ie, discounting the mass returned to the ISM by SNe, winds, . . . ). f⋆,j should be > 0 and
≤ 1.
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6. Col 6: The “YAV flag”. Components with YAV flag = 0 will be extincted by AV , whereas
those with YAV flag = 1 will be allowed to have V-band extinctions of AV + AY

V . If you
want to do something not completely unlike Charlot & Fall (2000), set YAV flag = 1 for
components of tj ≤ 107 yr and = 0 for all the others. If all components have YAV flag =
0 then STARLIGHT will fit a single value of the extinction (AV ). I suggest always starting
with YAV flag = 0 for all components.

Both AV and AY
V are limited between lower & upper values specified in arq config (§4.4).

Beware that AY
V will not be constrained at all if the YAV flag = 1 components have negligible

flux. For instance, AY
V = 2 mag means nothing if the components which are allowed to have

this extra extinction are not present or have very low flux (xj ∼ 0)! The opposite may also
happen, ie, your spectrum is heavily dominated by the YAV flag = 1 components, in which
case you may not be able to distinguish between AV and AY

V , and all you can trust is the
total extinction AV + AY

V . The bottom line, again, is that you should be very careful when
interpreting the results! In fact, we suggest you do not use this option at all, or else, use
it with much care! Dealing with multiple extinctions is a major problem for all synthesis
codes, and STARLIGHT is no exception.

7. Col 7: The α/Fe ratio of component j.

OBS: Of all these info, STARLIGHT really only needs columns 1 and 6. The ages, metallicities,
nick-names and α/Fe columns are only used to produce an organized, informative output (arq out,
presented in §6), while f⋆,j is only used in the conversion from light to mass-fractions. None of
these things is actually used in the fit. Sometimes, these informations are not available, and
in other cases they do not even exist! For instance, when you fit a spectrum with a set of template
spectra of individual stars, power-laws, nebular-continuum or observed galaxy spectra, things like
age or f⋆,j are just not definable. Worry not, but make sure you fill in the fields.

4.3.2 Base spectra files

The individual base spectra (arq j) must have λ in its 1st column and lλj in the 2nd column. Header
lines, if present, must start with a “#” in the 1st column.

All that is required from these spectra is that they come in an λ-increasing order, and that all base
spectra be sampled in exactly the same way. (Do not mix an arq j with 6000 λ’s with an
arq k with 2000 λ’s . . . ) STARLIGHT does the necessary resampling and trimming. Yet, beware
that funny things may happen if, for instance, your base is sampled at ∆λ = 20 Å from 4000 to
5000 Å and at ∆λ = 1 Å from 5000 to 7000 Å, and you try to fit the whole 4000–7000 Å range.4

The kinematical parameters may go bananas in this case. (Such a transition in sampling occurs,
for instance, in the high-resolution BC03/STELIB models at 3322 Å.)

The individual base files should be stored in a directory “base dir” specified in the grid-file. The
“bc2003 hr *.spec” files under “STARLIGHTv04/BasesDir” are examples of base spectra. They

4It is possible to circumvent these problems fixing the kinematical parameters beforehand using the grid-file option
“FXK” explained in §4.5.
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were extracted from www.cida.ve/∼bruzual/bc2003.5

OBS: base dir + arq j should not exceed 100 characters. (If this is a problem create a symbolic
link to base dir.)

• Units: For a BC03 base of SSPs, the lλj spectra come in units of L⊙/Å per initial M⊙. The
spectrum is thus a light-to-mass-ratio spectrum, but to convert it to a light-to-current-stellar-
mass-ratio we must divide it by f⋆,j . Again, this is only relevant in the conversion from light to
mass fractions, done at the very end of a STARLIGHT run. Users using a base from a different
evolutionary synthesis code (eg, PÉGASE, SED, Starburst99, . . . ) should adopt these same units,
or else do their own light-to-mass conversions. Obviously, none of this makes any sense whatsoever
for bases made up of observed spectra, like template galaxies, stars or power-laws.

4.3.3 Example Base-files

The file Base.BC03.N shows an example base master file which uses BC03 spectra of 3 metallicities
and 15 different ages (hence N⋆ = 3 × 15 = 45). Values for the “stellar-mass fraction” (column 5)
were taken from the bc2003 hr m* chab ssp.4color files in the BC03 distribution. Notice that this
example has YAV flag = 0 for all components (column 6). Here is a piece of it:

45 [N_base]

bc2003_hr_m42_chab_ssp_020.spec 0.00100e9 0.00400 age020_m42 1.0000 0 0.0000

bc2003_hr_m42_chab_ssp_045.spec 0.00316e9 0.00400 age045_m42 0.9999 0 0.0000

bc2003_hr_m42_chab_ssp_055.spec 0.00501e9 0.00400 age055_m42 0.9488 0 0.0000

bc2003_hr_m42_chab_ssp_070.spec 0.01000e9 0.00400 age070_m42 0.8862 0 0.0000

...

bc2003_hr_m42_chab_ssp_150.spec 2.50000e9 0.00400 age150_m42 0.5463 0 0.0000

bc2003_hr_m42_chab_ssp_161.spec 5.00000e9 0.00400 age161_m42 0.5228 0 0.0000

bc2003_hr_m42_chab_ssp_185.spec 11.00000e9 0.00400 age185_m42 0.4980 0 0.0000

bc2003_hr_m42_chab_ssp_193.spec 13.00000e9 0.00400 age193_m42 0.4927 0 0.0000

...

bc2003_hr_m72_chab_ssp_020.spec 0.00100e9 0.05000 age020_m72 0.9998 0 0.0000

bc2003_hr_m72_chab_ssp_045.spec 0.00316e9 0.05000 age045_m72 0.9577 0 0.0000

bc2003_hr_m72_chab_ssp_055.spec 0.00501e9 0.05000 age055_m72 0.9147 0 0.0000

bc2003_hr_m72_chab_ssp_070.spec 0.01000e9 0.05000 age070_m72 0.8524 0 0.0000

...

bc2003_hr_m72_chab_ssp_150.spec 2.50000e9 0.05000 age150_m72 0.5583 0 0.0000

bc2003_hr_m72_chab_ssp_161.spec 5.00000e9 0.05000 age161_m72 0.5320 0 0.0000

bc2003_hr_m72_chab_ssp_185.spec 11.00000e9 0.05000 age185_m72 0.5070 0 0.0000

bc2003_hr_m72_chab_ssp_193.spec 13.00000e9 0.05000 age193_m72 0.5018 0 0.0000

# spec-file age [yr] Z code Mstar YAV? a/Fe

...

Here is a sample of the spectrum of the 25th element in this base
(bc2003 hr m62 chab ssp 135.spec), extracted from BC03:

# Output file name = bc2003_hr_m62_chab_ssp_135.spec

# Input file name = bc2003_hr_m62_chab_ssp.ised

# Column 2

# Record 135

# Age (yr) 9.048E+08

# Lambda(A) Flux

9.100000E+01 1.276E-07

9.400000E+01 1.442E-07

9.600000E+01 1.495E-07

...

3.270000E+03 9.475E-05

3.290000E+03 9.373E-05

3.310000E+03 9.430E-05

5We thank Gustavo Bruzual and Stephane Charlot for allowing us to include their models in this distribution.
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3.322000E+03 8.968E-05

3.323000E+03 8.702E-05

3.324000E+03 8.956E-05

3.325000E+03 9.520E-05

3.326000E+03 9.930E-05

...

9.297000E+03 9.801E-05

9.298000E+03 9.810E-05

9.299000E+03 9.725E-05

9.300000E+03 9.649E-05

9.310000E+03 1.011E-04

9.330000E+03 1.028E-04

...

1.000000E+06 4.534E-12

1.200000E+06 2.180E-12

1.400000E+06 1.173E-12

1.600000E+06 6.859E-13

(Notice the changes in sampling at λ = 3322 and 9300 Å.)

File Base.BC03.S is an example with N⋆ = 150 BC03 spectra of 6 metallicities and 25 different
ages (used in Mateus et al. 2006; Cid Fernandes et al. 2007; Asari et al. 2007).

OBS: This distribution of STARLIGHT includes only the 159 files from BC03 used in
Base.BC03.N and Base.BC03.S. Our site contains many other base spectra and base
master-files from BC03 and other sources. Quite a few more should appear during 2007–2008,
when several new sets of evolutionary synthesis models are expected to become available.

4.4 The configuration file

This is the harder to explain, as it contains all of the technical parameters which control
STARLIGHT. It also specifies things like where to normalize, what are the limits for extinction
and kinematical parameters, if deviant points should be clipped and how, . . . Each entry is
followed by a comment which should hopefully give you some clue as to what that parameter does.
The most important of these are described below when we explain what the code does in the next
sections, so we’ll come back to arq config later. Meanwhile, have a quick look at any of the
*.config files to have a feeling of how scary they look. Parameters in arq config are signaled with
this color throughout this manual. (In fact, some have already appeared in this manual.)

4.4.1 Example configuration files

StCv04.C11.config and StCv04.C99.config are examples of configuration files. The first is
designed to run faster. The latter does many more iterations and loops, and should in principle
produce a more detailed fit. StCv04.C99.config takes ∼ 3 times longer to run and computes
∼ 3 times more models, but note these are approximate numbers which vary from case to case,
depending how fast convergence is achieved. In practice, this makes little difference in the results
or fit quality! In fact, given that STARLIGHT uses random numbers to evolve its Markov Chains,
it is possible that a long fit may yield a slightly worse χ2 than a fast one! The essential features of
the fit, however, should be equivalent.
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4.5 The grid file

Don’t panic (Adams 1979)! You’re nearly there. You already know how to prepare your input
spectra (§4.1), write a masks file (§4.2) and organize the base files (§4.3). You also learned that
there is an ugly and mysterious configuration file (§4.4), to be explained later. The last thing you
need to run STARLIGHT is a grid file like grid example1.in, which starts with a 15-line “header”
informing:

1. The number of spectra to be fitted (Nfits).

2. The base directory string base dir, which says where the base spectra are located.

3. The obs directory string obs dir, which says where the arq obs input spectra to be fitted are
located.

4. The mask directory string mask dir, which says where the arq masks mask files are located.

5. The out directory string out dir, which says where the arq out output STARLIGHT files are
to be stored.

6. An integer seed for the random number generator. Your phone number will do it. (If you
use 0, the same seed will be used for every one of the Nfits, which may be useful if you are
testing the effects of, say, different configuration files.)

7. llow SN, and

8. lupp SN. Fluxes in the λ = llow SN → lupp SN range will be used to define a “S/N” ratio (=
rms/mean flux). If you do not provide an error spectrum eλ, the rms of Oλ in this window
will be taken as a measure of the noise and used as eλ (see §4.1). If you do provide eλ, then
a S/N will still be computed in the llow SN → lupp SN range and reported in arq out, but
it will not be actually used for anything but output purposes. Masked and flagged pixels are
ignored in the computation of S/N.

9. λsyn
ini ,

10. λsyn
fin , and

11. ∆λsyn define the lower and upper wavelengths to be synthesized and the sampling, all in Å.
This range can exceed that of your data or vice-versa, but make sure data and model overlap
somewhere! If you tell STARLIGHT to model λ’s beyond the range spanned by your base,
these λ’s will be flagged as bad and ignored. As already said, we recommend ∆λsyn = 1 Å.

12. A cooking factor which should be set equal to 1 unless everything else fails. (It is a multi-
plicative factor applied to χ2, only useful when your errors are severely wrong, and even then
it should not be really used! Fix your eλ instead.)

13. A fitting option string which should be set to ‘FIT’ or ‘FXK’. The latter option will freeze in
attempts to fit kinematical parameters (v⋆ & σ⋆). Hence, if you chose ‘FXK’, v⋆ and σ⋆ will
be kept fixed at their starting values (see below) throughout the fits. Otherwise, with ‘FIT’
STARLIGHT will try to find the values of v⋆ and σ⋆ which produce a best match.
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14. A 1/0 = Yes/No switch to inform whether your data file has an error spectrum or not.

15. A 1/0 = Yes/No switch to inform whether your data file has a flag spectrum or not.

After this general header, each of the following Nfits lines should contain:

arq obs arq config arq base arq masks red law option v0 start vd start arq out

• The arq *’s have been explained above, except for arq out, which is the corresponding output
file name. It is convenient to construct output filenames by appending to the input data filename
suffixes informing the reddening law, base, configuration and mask files used, phase of the moon,
etc.

• red law option (column 5) is a 3-characters string (like ‘CCM’ or ‘CAL’) which specifies which
reddening law you want to use. See §4.6 for the options.

• v0 start and vd start are first guesses for the velocity shift (v0 = v⋆) and velocity dispersion (vd
= σ⋆), both in km/s. We normally use v0 start = 0 and vd start = 150 when we know nothing
about kinematics beforehand and want to fit it. In this case, the fit-option string in line 13 of
the header should be ’FIT’. STARLIGHT usually does a very good job in measuring v0 and vd,
but sometimes (eg, HII galaxies) a spectrum has few absorption lines where to anchor v0 and vd
estimates, which may then go wild, since all there is to fit in this case is the continuum shape. If you
want to keep the kinematical parameters fixed during the fit, plug your favorite values in columns
6 & 7 and set the fit-option string to ’FXK’. If you want v0 and/or vd to be constrained to within
certain limits, use ’FIT’ and adjust the v0 low, v0 upp, vd low and vd upp limits in arq config.

In case you are wondering why on earth (or elsewhere, for that matter) we should allow for a v0
if the spectrum is supposed to be in the rest frame (§4.1), think of v0 as a fine-tuning for slight
errors in your de-redshifting process. Beware that STARLIGHT is not prepared to handle very
badly de-redshifted data (error > 500 km/s). For well de-reshifted spectra, v0 will usually be a
small number, like ±5–20 km/s. For long-slit or IFU galaxy spectra, you may have de-redshifted the
spectra using the nuclear value. In this case, the output values of v0 can help you derive a rotation
curve, as well as vd maps (eg., Barbosa et al. 2006). A way of effectively turning off v0-fitting is
to limit its low & upp limits in arq config to a small range. Conversely, if you are in interested in
v0 but do not have a base with enough resolution to measure vd, set vd low = vd upp = 0 in
arq config.

IMPORTANT NOTE ABOUT KINEMATICS: The v0 and vd values are the shift and
broadening parameters applied to the model which best fits the data. Hence, v0 and vd are only
really equal to v⋆ and σ⋆ if: (1) your base spectra are in the rest-frame, and (2) your base and data
have the same spectral resolution. If your spectral resolution is σinst and the base has σbase, do

σ2
⋆ = vd2 − σ2

inst + σ2
base (1)

to correct vd to a proper velocity dispersion. Don’t expect reliable estimates when σ⋆ < σbase or
σ⋆ < σinst, ie, when the true velocity dispersion is smaller than the resolution of the base or your
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data. For instance, a very high resolution spectrum (σinst ∼ 0) of a dwarf galaxy or a star cluster
modeled with a base with σbase ∼ 100 km/s, you should get vd ∼ 0. This means that STARLIGHT
did not find it necessary to broaden the model spectrum to improve the fit. If this is a serious
problem for you (can’t see why), then smooth your data to ∼ σbase before fitting it. See §4.7 for
other subtleties on v0 and vd estimates.

4.5.1 Example grid files

Files grid example1.in, grid example2.in and grid example3.in are examples of grid files.
Here is grid example1.in, which fits 2 SDSS spectra (with both eλ and flagλ) from 3400 to 8900
in steps of 1 Å, using config parameters from StCv04.C11.config, a Base.BC03.N base, individual
mask files, a CCM reddening law, and guessing v0 = 0, vd = 150 km/s to start:

2 [Number of fits to run]

/home/cid/STARLIGHTv04/BasesDir/ [base_dir]

/home/cid/STARLIGHTv04/ [obs_dir]

/home/cid/STARLIGHTv04/ [mask_dir]

/home/cid/STARLIGHTv04/ [out_dir]

-2007200 [your phone number]

4730.0 [llow_SN] lower-lambda of S/N window

4780.0 [lupp_SN] upper-lambda of S/N window

3400.0 [Olsyn_ini] lower-lambda for fit

8900.0 [Olsyn_fin] upper-lambda for fit

1.0 [Odlsyn] delta-lambda for fit

1.0 [fscale_chi2] fudge-factor for chi2

FIT [FIT/FXK] Fit or Fix kinematics

1 [IsErrSpecAvailable] 1/0 = Yes/No

1 [IsFlagSpecAvailable] 1/0 = Yes/No

0414.51901.393.cxt StCv04.C11.config Base.BC03.N Mask.0414.51901.393.cxt.sc1.CRAP.gm.BN CCM 0.0 150.0 0414.51901.393.cxt.sc4.C11.im.CCM.BN

0784.52327.478.cxt StCv04.C11.config Base.BC03.N Mask.0784.52327.478.cxt.sc2.CRAP.gm.BN CCM 0.0 150.0 0784.52327.478.cxt.sc4.C11.im.CCM.BN

Example of 2 SDSS galaxies fitted with Base.BC03.N (45 components), CCM law, etc.

Cid@Lagoa - 29/March/2007

grid example2.in is similar to grid example1.in (in fact, they could be merged in a single grid
file). It changes the base file and/or reddening law option, but fits the same 2 galaxies.

grid example3.in is different. It fits a spectrum with no eλ nor flagλ (thus IsErrSpecAvailable =
0 and IsFlagSpecAvailable = 0), uses a general mask, a smaller λ-range and tries 2 different config
files, including a “slow” one (StCv04.C99.config).

OBS: In all grid file examples given, the arq obs, arq mask and arq out files are in the same
directory (STARLIGHTv04/). Change obs dir, mask dir and out dir as you will, but make sure
that the full path + file name never exceeds 100 characters. (Again, use symbolic links to
bypass this limit.)

4.6 Reddening-law options

STARLIGHT has a suite of reddening-laws options, which the user chooses through the 3-byte-long
string red law option informed in the grid file. Some options were shamelessly “borrowed” from the
HyperZ code (webast.ast.obs-mip.fr/hyperz/). The options are:

CCM - Cardelly, Clayton & Mathis (1989, with RV = 3.1). Beware of this curve for large extinctions!
(We’ve seen its 7th order polynomial do weird things with ULIRG spectra. . . )
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CAL - The “Calzetti law”

GD1 - Gordon et al. (2003) SMC Bar (interpolated from their Table 4)

GD2 - Gordon et al. (2003) LMC2 Super-Shell (interpolated from their Table 4)

GD3 - Gordon et al. (2003) LMC Average (interpolated from their Table 4)

HZ1 - HYPERZ = Allen (1976), from HyperZ

HZ2 - HYPERZ = Seaton (1979), from HyperZ

HZ3 - HYPERZ = Fitzpatrick (1986) LMC, from HyperZ

HZ4 - HYPERZ = for Prevot et al. (1984) and Bouchet et al. (1985) SMC, from HyperZ

HZ5 - HYPERZ = Calzetti (astro-ph/9911459), from HyperZ

*** Your own law: If you’d rather define your own extinction law, prepare a file with two
columns, λ and Aλ/AV (just that, no headers, footers, etc), and call it ExtinctionLaw.***,
where “***” is a 3-byte-long extension of your liking. Choose a name for *** and use it as the
3-character-long red law option string to be given in the grid-file. Place the file in the same
directory as your executable. Use this option with care, and make sure your λ’s cover all the
range of the data you want to model (preferably more). STARLIGHT interpolates linearly in
λ−1 from the table. Don’t worry about having too many points in this file, as the reddening
array (sampled as your model) is only computed once.

4.7 Subtleties about λ ranges and the kinematical filter

STARLIGHT needs a safety cushion on the edges of your data to deal with kinematical parameters
(v0 & vd). The size of this cushion in Å is set by dl cushion in arq config (we usually use 50 Å).
This means that your base spectra should be defined at least from λsyn

ini − dl cushion to λsyn
fin+

dl cushion. If you do not observe this, then the kinematical kernel may go bananas with edge
effects.

Example: If your base spectra go from 4000 to 7000 Å and you set dl cushion = 50, the maximum
range to be fitted is λsyn

ini = 4050 to λsyn
fin = 6950 Å. The points between 4000–4050 and 6950–7000

will be used to compute a model and in the convolution, but will be automatically masked from the
fits (ie, they will not be compared to the data because at least some of them will be badly affected
by edge effects.) If you forget this detail, STARLIGHT will issue a warning and mask out points
outside the 4050–6950 anyway.

Dealing with kinematics slows things down quite a bit. By the time STARLIGHT gets to the last
stage of the fitting process (the EX0-phase, explained later), kinematical parameters have probably
converged. In this case, you may choose to fix them setting IsNoKin4LargeBaseInEX0sFits
= 1 and frac NoKin4LargeBaseInEX0sFits = 0 in arq config. If you are more interested on
the kinematics than on the populations, do the opposite, such that kinematical parameters will be
re-fitted all the way.
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5 Running STARLIGHT

In the unlikely case you have already understood everything and prepared your own input and
auxiliary files, go ahead and try your luck. Otherwise, run the grid examples provided. Do this
with

./StarlightChains v04.exe < grid example1.in

or

nice -n19 ./StarlightChains v04.exe < grid example1.in > grid example1.log &

if you want to save the stuff which goes to the screen and be nice to whoever else is using your
CPU. Here is what the screen output for the 1st run in grid example1.in looks like:

**> Welcome to STARLIGHT (v04) & good luck with this run!

**> Read config file: StCv04.C11.config

**> Read data file: 0414.51901.393.cxt

from dir = /home/cid/STARLIGHTv04/

Data goes from: 3200.0 --> 9200.0 Angs with N = 6001 pixels

STARLIGHT has read an ERROR (column 3) from 0414.51901.393.cxt

STARLIGHT has read an FLAG (column 4) from 0414.51901.393.cxt

**> Read base files: Base.BC03.N N_base = 45

from dir = /home/cid/STARLIGHTv04/BasesDir/

**> Read masks file: Mask.0414.51901.393.cxt.sc1.CRAP.gm.BN N_masks = 39

from dir = /home/cid/STARLIGHTv04/

**> Modeling 0414.51901.393.cxt ==> 0414.51901.393.cxt.sc4.C11.im.CCM.BN

Sampling: 3400.0 ==> 8900.0 with dl = 1.0 Angs & fscale_chi2 = 1.000E+00

dl_cushion (A) = 50.0

Extinction Law = CCM

Initial kinematical parameters: v0 = 0.0 & vd = 150.0 km/s

We are going to FIT the spectrum of this galaxy

Number of components with different extinction = 0 ( 0.00 < YAV < 0.00)

S/N = 24.912 32.739 in S/N & norm. windows

S/N_err = 16.546 21.744 in S/N & norm. windows

********************************************************************************

* STARTING FIRST FITS ...

* N_loops = 3

* N_chains = 7

* Temp = 1.00E+02 ==> 1.00E+00

* GR-R = 1.30E+00 ==> 1.30E+00 Method = 0 (0/1=Soft/Hard)

********************************************************************************

********************************************************************************

* STARTING RE-FIT AFTER CLIPPING ...

* Clipped 3 points with > 3.0 sigma residuals with method = NSIGMA

* N_loops = 1

* Temp = 1.00E+00 ==> 1.00E+00

* GR-R = 1.30E+00 ==> 1.30E+00 Method = 0 (0/1=Soft/Hard)

********************************************************************************

********************************************************************************

* STARTING FINAL BURN-IN LOOP...

* N_loops = 1

* Temp = 1.00E+00 ==> 1.00E+00

* GR-R = 1.20E+00 ==> 1.20E+00 Method = 0 (0/1=Soft/Hard)

********************************************************************************

********************************************************************************

* STARTING EX0s FITS ...

* EX0_method = CUMUL

* EX0s_Threshold = 0.020

* EXOs_PopVector = MIN

* N_loops = 5

* Temp = 1.00E+00 ==> 1.00E-03

* GR-R = 1.20E+00 ==> 1.00E+00 Method = 1 (0/1=Soft/Hard)

********************************************************************************

**> RESULTS for 0414.51901.393.cxt.sc4.C11.im.CCM.BN

N_tot chi2/Nl_eff adev | v0 vd | sum A_V Y_AV | x_j... [%], j = 1 ... 45

1225140 6.5669E-01 4.7752 | -22.9 42.5 | 101.606 0.26 0.00 | 11.84 1.60 1.54 4.27 0.00 18.13 9.83 6.98 6.35 9.13

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10.10 0.00

0.00 0.00 0.00 11.95 0.00 0.00 0.00 0.00 0.00 0.00
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0.00 0.00 1.07 1.41 0.00 4.39 0.00 0.00 3.00 0.00

0.00 0.00 0.00 0.00 0.00

Total chi2 = 2.7292E+03 for Nl_eff = 4156 lambdas!

When you do something really silly or provide inconsistent input, the screen output may tell you
what you’ve done wrong. Otherwise, screen output is not useful for you, so you might as well
redirect it to > /dev/null. There are verbose-level options in arq config.

When you’re done, repeat the commands with grid example2.in and grid example3.in.

Be patient! Each run may take several minutes. Nobody ever said STARLIGHT is fast!
grid examples 1, 2 and 3 take ∼ 2, 30 and 30 minutes in a 2–3 GHz CPU, respectively.

6 STARLIGHT output

All synthesis results are stored in arq out in a ∼ self-explanatory way. The length of the output
file depends on the size of the base (N⋆) and the length of the model spectrum Mλ. arq out has an
extensive “header”, which, besides output, repeats most of the input info for completeness. Here is
a brief tour through an example.

• The first block should look like this (example taken from my run of
0414.51901.393.cxt.sc4.C11.im.CAL.BN in grid example2.in):

## Some input info

0414.51901.393.cxt [arq_obs]

Base.BC03.N [arq_base]

Mask.0414.51901.393.cxt.sc1.CRAP.gm.BN [arq_masks]

StCv04.C11.config [arq_config]

45 [N_base]

0 [N_YAV_components = # of components with extra extinction!]

0 [i_FitPowerLaw (1/0 = Yes/No)]

-9.99 [alpha_PowerLaw]

CAL [red_law_option]

1.355739 [q_norm = A(l_norm)/A(V)]

As you can see, it tells you nothing you did not know already, with the possible exception of q norm,
which is the value of q norm = qλ0

= Aλ0
/AV for your choice of extinction curve.

• The block

## (Re)Sampling Parameters

3400.00 [l_ini (A)]

8900.00 [l_fin (A)]

1.00 [dl (A)] (OBS: dl_cushion = 50.00 A)
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repeats the λsyn
ini , λsyn

fin and ∆λsyn info given in the grid file. The only reason I mention it here is
because of the value of dl cushion, an important parameter set in arq config which we explained
in §4.7. (Hopefully it will not be relevant/critical for you.)

• The fragment below repeats the normalization λ’s given in arq config and, more importantly,
gives you the flux by which your spectrum was divided, fobs norm. You will need this value to
denormalize the fit.

## Normalization info

4020.00 [l_norm (A) - for base]

4010.00 [llow_norm (A) - window for f_obs]

4060.00 [lupp_norm (A) - window for f_obs]

1.655215E+01 [fobs_norm (in input units)]

• The next block informs the computed S/N (= mean/rms flux) in the S/N and normalization
windows. (The S/N window is informed in the grid file while the normalization window is specified
in arq config.)

## S/N

4730.00 [llow_SN (A) - window for S/N]

4780.00 [lupp_SN (A) - window for S/N]

24.912 [S/N in S/N window]

32.739 [S/N in norm. window]

These lines are followed by two corresponding “S/N err” values, which are S/N estimates computed
with the error spectrum (if you have one). Recall that if you have provided an error spectrum,
none of these numbers were really used in the fit.

• In the etc-block which follows, you may be interested in

4159 [NOl_eff]

4156 [Nl_eff]

3 NSIGMA [Ntot_cliped & clip_method]

1387680 [Nglobal_steps]

7 [N_chains]

21 [NEX0s_base = N_base in EX0s-fits]

which tell you what is the number of good pixels (i.e., unmasked & unflagged) in your original
data, the number which survived clipping and the number of clipped pixels (along with your chosen
clip method option, specified in arq config). Nglobal steps tells you the total number of models
tried throughout the fit. N chains repeats the number of Markov Chains you chose in arq config,
and NEX0s base tells how many of your original N⋆ base components were actually used in the fit.
The line
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78 67.020 66.848 0.172 [idt_all, wdt_TotTime, wdt_UsrTime & wdt_SysTime (sec)]

tells you ∼ how long the fit took to run (wdt TotTime is the better CPU time-counter.)

• The “Synthesis Results - Best model” block is the most important one. It starts with

## Synthesis Results - Best model ##

6.55432E-01 [chi2/Nl_eff]

4.76778 [adev (%)]

101.77190 [sum-of-x (%)]

2.35170E+01 [Flux_tot (units of input spectrum!)]

3.65062E+04 [Mini_tot (???)]

2.21600E+04 [Mcor_tot (???)]

where chi2/Nl eff is the fit χ2 divided by the number of λ’s used in the fit, and adev gives you the
percentage mean |Oλ −Mλ|/Oλ deviation over all fitted pixels. Both measure the quality of the fit.

Next comes sum-of-x =
∑

xj . Do not be surprised to find that the xj ’s do not add up to 100% (more
on this later). Flux tot gives the total dereddened synthetic flux at l norm (prior to application of
the kinematical filter, and in units of fobs norm), in case you need it. Mini tot and Mcor tot are
more important. If your spectrum has a reliable absolute flux calibration and your base spectra
were SSPs given in proper L⊙ Å−1M−1

⊙ units, these values allow you to compute galaxy masses. If
your observed spectrum Oλ comes in units of, say, 10−17 erg/s/cm2/Å, do

M⋆ = Mcor tot × 10−17 × 4πd2 × (3.826 × 1033)−1 (2)

to obtain the present mass in stars (in M⊙). Similarly

M ini
⋆ = Mini tot × 10−17 × 4πd2 × (3.826 × 1033)−1 (3)

will tell you how many M⊙’s have been processed into stars throughout the galaxies life. (This is
where the f⋆,j values in the base master-file, discussed in §4.3, are used. For a not-too-crazy galaxy
and a Chabrier (2003) IMF, M ini

⋆ ∼ 2M⋆, due to the mass returned to the ISM by SNe and winds).

Next,

-19.90 [v0_min (km/s)]

44.92 [vd_min (km/s)]

0.2672 [AV_min (mag)]

0.0000 [YAV_min (mag)]

give you the best fit values of v0, vd, AV and AY
V . Obviously, YAV min will only have meaning

if you ignored doctor’s recommendations and dared to use YAV flag = 1 in your arq base. Recall
that this feature has its own severe existential problems.
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Then comes the part which tells you what was the best population mixture found by
STARLIGHT. For many applications this is the most relevant result. You should be able to derive
mean ages, mean metallicities and star-formation histories from it. It looks like this:

# j x_j(%) Mini_j(%) Mcor_j(%) age_j(yr) Z_j (L/M)_j YAV? Mstars component_j a/Fe... SSP_chi2r SSP_adev(%) SSP_AV SSP_x(%)

1 15.0005 8.5233E-01 1.4041E+00 1.000000E+06 0.00400 1.114E-02 0 1.0000 age020_m42 0.0000 1.0183E+00 6.1188 2.2985 92.6204

2 7.8143 1.2144E-01 2.0004E-01 3.160000E+06 0.00400 4.073E-02 0 0.9999 age045_m42 0.0000 9.0516E-01 5.6222 1.5142 96.3750

3 0.0000 0.0000E+00 0.0000E+00 5.010000E+06 0.00400 2.534E-02 0 0.9488 age055_m42 0.0000 8.9463E-01 5.5813 1.7901 95.8431

4 3.9879 1.9860E-01 2.8994E-01 1.000000E+07 0.00400 1.271E-02 0 0.8862 age070_m42 0.0000 8.1546E-01 5.3180 0.7523 100.7819

5 0.0032 4.0396E-04 5.4396E-04 2.512000E+07 0.00400 5.070E-03 0 0.8174 age090_m42 0.0000 7.7199E-01 5.1622 0.6343 101.2523

6 3.8530 6.9583E-01 8.9997E-01 4.000000E+07 0.00400 3.505E-03 0 0.7851 age104_m42 0.0000 7.3431E-01 5.0223 0.3965 100.0800

7 9.5516 2.6658E+00 3.1650E+00 1.015200E+08 0.00400 2.268E-03 0 0.7207 age116_m42 0.0000 7.4348E-01 5.0608 0.7737 98.6686

8 8.1674 4.7913E+00 5.2197E+00 2.861200E+08 0.00400 1.079E-03 0 0.6613 age125_m42 0.0000 8.0436E-01 5.2328 0.2201 98.7746

9 2.2559 2.8126E+00 2.8714E+00 6.405400E+08 0.00400 5.077E-04 0 0.6197 age132_m42 0.0000 9.5596E-01 5.7433 -0.1108 99.5684

10 2.3293 4.1708E+00 4.1390E+00 9.047900E+08 0.00400 3.535E-04 0 0.6024 age135_m42 0.0000 1.1538E+00 6.4879 -0.3476 97.3618

...

36 9.5865 1.8975E+00 2.3813E+00 4.000000E+07 0.05000 3.198E-03 0 0.7618 age104_m72 0.0000 1.5719E+00 7.8272 0.7568 107.1004

37 0.0178 6.5608E-03 7.6652E-03 1.015200E+08 0.05000 1.716E-03 0 0.7092 age116_m72 0.0000 1.1137E+00 6.4566 0.6120 106.1525

38 0.0000 0.0000E+00 0.0000E+00 2.861200E+08 0.05000 7.047E-04 0 0.6618 age125_m72 0.0000 9.4658E-01 5.6301 0.0863 100.7158

39 6.2124 1.4935E+01 1.5385E+01 6.405400E+08 0.05000 2.633E-04 0 0.6253 age132_m72 0.0000 1.6647E+00 7.6342 -0.6874 95.1361

40 0.0000 0.0000E+00 0.0000E+00 9.047900E+08 0.05000 1.484E-04 0 0.6088 age135_m72 0.0000 2.7284E+00 9.2713 -1.0000 82.4165

41 0.0000 0.0000E+00 0.0000E+00 1.434000E+09 0.05000 7.827E-05 0 0.5847 age139_m72 0.0000 5.4087E+00 11.7629 -1.0000 65.6914

42 0.0000 0.0000E+00 0.0000E+00 2.500000E+09 0.05000 3.759E-05 0 0.5583 age150_m72 0.0000 9.1184E+00 15.9948 -1.0000 54.8760

43 0.0000 0.0000E+00 0.0000E+00 5.000000E+09 0.05000 1.548E-05 0 0.5320 age161_m72 0.0000 1.5789E+01 22.6938 -1.0000 43.0039

44 0.0000 0.0000E+00 0.0000E+00 1.100000E+10 0.05000 6.532E-06 0 0.5070 age185_m72 0.0000 2.0586E+01 26.2549 -1.0000 35.3899

45 0.0000 0.0000E+00 0.0000E+00 1.300000E+10 0.05000 5.316E-06 0 0.5018 age193_m72 0.0000 2.1968E+01 27.1923 -1.0000 33.4145

These N⋆ lines give in column 2 the “light-fraction” population vector xj . Columns 3 and 4 transform
~x to initial and current mass fractions. All are given in percentages. The next 7 columns (up to
“a/Fe”) just repeat info in arq base and the base spectra. (L/M) j in column 7 gives you what we
call lλ0,j in eq. (6), ie., the value of your jth base spectrum at the normalization wavelength λ0 (=
l norm in the “Normalization info” block). There are numerous ways of using the light-weighted
and mass-weighted population vectors. The reader is referred to our papers for inspiration on such
post-processing steps, as well as warnings about potential caveats.

The last 4 columns

... SSP_chi2r SSP_adev(%) SSP_AV SSP_x(%)

are new to version 4 and give you chi2/Nl eff, adev, AV min and the normalization factor (sum-of-x)
for fits using exclusively the component number j in the base. The only 2 parameters in these fits
are AV (SSP AV) and the normalization factor (SSP x). This feature may be useful for those looking
for the best single population fit, like people using STARLIGHT for star-clusters or ellipticals
galaxies. These fits (which are 50% analytical and 50% numerical), are done after STARLIGHT
fits a mixture of populations. Thus, if these single-pop fits are what you want more and your are in
a hurry, fiddle with the config parameters to force STARLIGHT to run fast for the composite-pops
fit, such that it gets to this final stage quicker. Notice that kinematical parameters are not fitted
in this stage, so either fix them or make sure the values obtained in the composite-pops fits are
suitable.

• The following 3 blocks should be ignored altogether! (They are relics from debugging days,
as many other things in arq out and the code itself. . . )

• Finally, you’ll find the last block: “Synthetic spectrum”. This is where the spectral fit is
stored.
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## Synthetic spectrum (Best Model) ##l_obs f_obs f_syn wei

5501 [Nl_obs]

3400.00 0.00000 0.82017 -2.000

3401.00 0.00000 0.81350 -2.000

3402.00 0.00000 0.80737 -2.000

...

3709.00 0.00000 0.71285 -2.000

3710.00 0.00000 0.69655 -2.000

3711.00 1.03425 0.68478 -2.000

3712.00 1.07127 0.68849 -2.000

3713.00 1.07245 0.70993 -2.000

3714.00 1.07361 0.74032 -2.000

3715.00 0.85735 0.76776 7.879

3716.00 0.69766 0.78332 7.889

3717.00 0.80657 0.78283 7.697

3718.00 0.63605 0.76177 0.000

3719.00 0.54425 0.72062 0.000

...

8897.00 0.32947 0.31252 21.539

8898.00 0.31375 0.31263 21.821

8899.00 0.28400 0.31314 21.953

8900.00 0.25205 0.31389 22.061

The first thing you’ll want to do after completing a spectral fit is to have a look at how good/bad
it is! The info for your model versus data plot is given here in 4 columns: λ, Oλ and Mλ and
wλ. Both Oλ and Mλ are given in units of fobs norm. The weight-spectrum is equal to 1/eλ

(with the error also in units of fobs norm), except for pixels which were masked (signalled with
wλ = 0), flagged (wλ = −2) or clipped (wλ = −1) away. In the example above, the first useful
pixel in at λ = 3715 Å. Just 3 pixels after it, the [OII]λ3727 emission line mask starts (as defined
in Mask.0414.51901.393.cxt.sc1.CRAP.gm.BN), so wλ = 0. The plots at the end of this doc
(§9) show examples of how to visualize this and other fits.

6.1 Example STARLIGHT output files

This distribution includes 8 STARLIGHT fits to each of the 3 input spectra listed in §4.1.4
(24 fits in total). The 8 fits correspond to 2 different arq config’s, 2 extinction laws
and 2 bases. They are named appending suffixes to arq obs. For example:
0414.51901.393.cxt.sc4.C11.im.CAL.BN is the fit of 0414.51901.393.cxt with
StarlightChains v04 (hence ‘sc4’), configuration StCv04.C11.config (hence ‘C11’), individual
mask (from Mask.0414.51901.393.cxt.sc1.CRAP.gm.BN, hence ’im’), CALzetti law (hence
’CAL’) and base Base.BC03.N (hence the ’BN’ suffix).

OBS: You may have overwritten them by now running the 3 grid example*.in files, but that’s Ok!
In case you didn’t, do not expect your own fits to these same spectra to yield results identical to
those reported in these files! Because STARLIGHT uses random Markov-Chains, if, due to, say,
machine-precision, one step of one of the chains changes then the whole thing may change! The
essential characteristics of the fits, however, should not change.
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6.2 Which fit should I use?

The multiple fits of each galaxy spectrum in this distribution differ in the base, extinction law
and arq config. Many more versions could be produced varying astrophysical ingredients and/or
technical parameters. This brings up a nagging question: Which fit should I adopt as the “official”

one?

If this question haunts your dreams/nightmares, welcome to the wonderful and hopelessly degenerate
world of population synthesis! There is no simple answer to this question. Eventually, some of the
fits will really be obviously worse in terms of figures of merit like χ2 or adev. Most often, you’ll find
∼ equally good fits changing important things like the base or the extinction law.

You just have to learn to live with this. Priors are often the only way to discard some fits. For
instance, you may think the nuclear spectrum of an early type galaxy should have stellar metallicities
≥ Z⊙, and thus restrict your fits to metal rich bases. Similarly, very young components could be
discarded if you are applying STARLIGHT to an elliptical galaxy. Last but not least, learn not to
over-interpret the fits! When working with large bases, you should somehow compress the output
population vector to something reasonable. This is not the place to discuss this issue, so have
a look at Cid Fernandes et al. (2004b and 2005) and Cid Fernandes (2007a and 2007b), where
compression strategies are reviewed. (Just yesterday there appeared a nice paper by Tojeiro et al.
on arXiv:0704.0941 discussing this issue.)

The plots at the end of this document show that the general look of the age distribution is essentially
the same for all fits of a same galaxy, which should at least alleviate the which-fit-to-use crisis.
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Figure 2: Welcome to the middle of this document!

7 What does STARLIGHT do and how?

Now that you know how to run STARLIGHT, you may be wondering exactly what you have
done. . . Here’s a not-so-brief description (which, despite its length, does not tell you all details!). As
you may already have realized, the code is far more complex than it needed be (and many times less
elegant than desirable!), and offers many more options than an average user will ever want to play
with. This happened because the code grew up gradually from applications to very different data
sets, with different ingredients and studied for different purposes. Besides this diversity in what goes
in and comes out of the code, we have experimented with many methods to explore the parameter
space, and settled for an efficient but frankensteinish combination of numerical techniques with an
inevitably large number of technical parameters. The code input, output and structure reflect this
history and that of the numerous tests carried out on the way to the present version. Indeed, several
of its features are obsolete skeletons from previous versions, kept only for backwards compatibility.
As a result, STARLIGHT is a rather messy code, but prepared to handle a variety of applications,
so its complexity payed off.

In this second half of this manual we tell you some of STARLIGHT secrets. You need to have at least
a rough understanding of these details to have an idea of what the many entries in arq config mean
and be able to play with them to best suit your needs. You also need to read to fully understand the
physical results stored in the output file. Take another deep breath and another cup of whatever it
is you are drinking. . .

7.1 The model spectrum Mλ(~x,AV , AY
V , v⋆, σ⋆)

STARLIGHT deals with N⋆ +4 parameters: The population vector x1 . . . xN⋆
, the global extinc-

tion AV , the “selective” extinction AY
V , plus two kinematical parameters: a velocity shift, v⋆, and

velocity dispersion σ⋆. These parameters enter in the equation for a model spectrum Mλ, deduced
below.

Start decomposing Mλ onto N⋆ components:

Mλ =
N⋆
∑

j=1

Lλ,j =
N⋆
∑

j=1

L0
λ,j ⊗ G(v⋆, σ⋆) 10−0.4Aλ,j (4)
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=
N⋆
∑

j=1

L0
λ0,jbλ,j ⊗ G(v⋆, σ⋆) 10−0.4Aλ,j (5)

where G is a Gaussian filter6 centered at velocity v⋆ and with dispersion σ⋆ and Aλ,j is the extinction
at λ of population j. In these equations L0

λ,j is the spectrum of population j without extinction nor
kinematics, and

bλ,j ≡
(

L0
λ,j

L0
λ0,j

)

=

(

Bλ,j

Bλ0,j

)

(6)

where Bλ,j is the spectrum of base component j (as read from arq j specified in arq base). The
value of this spectrum at the normalization wavelength, Bλ0,j , is listed in the column (L/M) j in

STARLIGHT’s output files, in its original units (eg, L⊙Å
−1

M−1
⊙ if the base comes from properly

calibrated evolutionary synthesis models).

Let’s further define the jth normalized base spectrum convolved with the kinematical filter

γλ,j ≡ bλ,j ⊗ G(v⋆, σ⋆) (7)

and write

Aλ = AV qλ (8)

Then

Mλ =
N⋆
∑

j=1

[

L0
λ0,j10−0.4AV,jqλ0

]

γj,λ10−0.4AV,j(qλ−qλ0
) (9)

The term in square brackets is the synthetic flux at λ0 due to component j, extincted by AV,j , and
prior to convolution with G. This is what we call xj :

xj ≡ L0
λ0,j10−0.4AV,jqλ0 (10)

so our final equation for the model spectrum is

Mλ =
N⋆
∑

j=1

xjγj,λ10−0.4AV,j(qλ−qλ0
) (11)

6This “convolution” transforms a spectrum F (λ) to I(λ), given by

I(λ) =

∫

+∞

−∞

F

(

λ′ =
λ

1 + v/c

)

G(v; v⋆, σ⋆)dv
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Repeating, written in this way, xj is the monochromatic flux at λ0 of component j, extincted by
its respective AV,j and prior to application of the kinematical kernel.7 Since all spectra will be
normalized at or around λ0 (see below), in practice, xj is ∼ the fraction of light due to component
j at λ0. It is not, however, exactly a light fraction! Indeed, in this formalism, the xj ’s will in
general not add up to 100%. Unlike in some earlier population synthesis work (eg, Bica 1988; Cid
Fernandes et al. 2001), STARLIGHT does not impose that model and data match exactly at the
normalization wavelength.

As written above, each component can have a different AV , but in practice we set AV,j according
to the “YAV flag” read from the base master-file arq base:

AV,j = AV if YAV flag(j) = 0 (12)

AV,j = AV + AY
V if YAV flag(j) = 1 (13)

Hence, instead of N⋆ extinctions, we deal with just two (one if YAV flag = 0 for all j’s), one
global (AV ) and another “selective” (AY

V ). As said before, using YAV flag = 1 is not recommended
unless you know exactly what you are doing and are prepared to deal with all problems related to
more-than-one extinction fits.8 A version of STARLIGHT allowing for multiple extinctions is under
development.

7.1.1 Normalization

As said above, the base spectra are all normalized at λ0. The choice of λ0 is made in arq config,
where we call it l norm.

In principle we could do the same for the observed spectrum (Oλ), but in real life the λ0 pixel in Oλ

may be affected by garbage (a noise spike, a cosmic ray, etc.). This is why STARLIGHT normalizes
Oλ by ON , defined as the median flux between llow norm and lupp norm, also specified in
arq config. Choose a relatively wide, problem- and line-free window, such that fobs norm does not
deviate much from the continuum in the range.9 We usually set l norm = 4020, llow norm =
4010 and lupp norm = 4060 Å. You may choose other values, but make sure your choice satisfies

llow norm < l norm < lupp norm (14)

for simplicity.

7Comparing (11) with eq. (1) of Cid Fernandes et al. (2005), you will realize that in eq. (11) the Mλ0
term present

in that paper has been absorbed in the definition of xj (this is how it is defined inside STARLIGHT). A more subtle
difference is that in eq. (1) of Cid Fernandes et al. (2005) you may get the impression that we apply the convolution
with the kernel G after reddening the spectrum, whereas in practice it is the other way around. This is really irrelevant,
since the extinction curve is smooth over scales of σ⋆.

8Another way to emulate different extinctions is to forget YAV flag altogether (setting it to 0) but include red-

dened spectra in your base! This has been tried and we got sensible qualitative results, though hard to manipulate
quantitatively and not-easy to interpret. . .

9All Oλ fluxes in the llow norm → lupp norm range, including masked and flagged pixels, are used in the
computation of the median.

28



The value of ON is denoted by fobs norm in arq out. Its units are the same as the input Oλ,
whatever they are. You’ll need this value to denormalize the observed & synthetic spectrum at the
end of arq out.

With this normalization xj will be the flux (or luminosity) of the jth component in units of ON . As
said above, in general, it will not add up to 100%, but you may trivially renormalize xj by

∑

xj if
you would rather work with light fractions. While STARLIGHT does not force

∑

xj = 1, it limits
this normalization factor to within fn low and fn upp, given in arq config.

7.2 The Numerical scheme

This long section describes numerical aspects, focusing on issues related to technical parameters
in arq config, so that you can have at least a rough idea of what all those numbers mean. Less
curious users may want to skip this section altogether and go to §8 where we suggest how to set-up
arq config for different types of fits.

The fit is carried out with a mixture of simulated annealing plus Metropolis plus Markov Chain
Monte Carlo techniques which explores the parameter space and searches for the minimum

χ2 = χ2(~x, AV , AY
V , v⋆, σ⋆) =

∑

λ

[(Oλ − Mλ)wλ]2 (15)

where the weight wλ = e−1
λ except for masked/flagged points (where it may be 0 or something else,

depending on what you did in the masks file).

The minimization consists of 4 stages, whose general aims are:

1. First Fits (FF): Make a broad sweep of the parameter space;

2. Clip & Refit: Exclude “unfitable” pixels;

3. Burn-In: Detailed fit with the full base;

4. EX0s fit (EX0): Discard irrelevant components and fine tune the fit.

In each of these stages, N chains sets of parameters are evolved through the parameter space in
a pseudo-random fashion, accepting or rejecting moves according to the Metropolis algorithm (ie,
based on the likelihood ratio of the before and after positions). Every now and then the chains talk
to each other to try to meet in a common region of parameter space.

In what follows we describe each stage. The FF stage is explained in greater detail, as all others
follow a similar logic. In fact, in all 4 stages STARLIGHT calls the same set of routines.

7.2.1 First Fits: Broad exploration of the parameter space

• The cooling schedule: The FF stage of the algorithm goes through N loops FF loops where
we decrease the “Temperature” from an initially hot to a final cold value according to a cooling
schedule:
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Tk = Temp ini FF ×
(

Temp fin FF

Temp ini FF

)(k−1)/(Nloops−1)

(16)

where k = 1 . . . N loops FF. For example, with N loops FF = 3, Temp ini FF = 100 and
Temp fin FF = 1 we would have T = 100, 10 and 1. “Temperature” here means the square of
the factor by which we multiply the errors eλ in the data. Recall that, under the assumption of
Gaussian errors, the likelihood function looks like a Boltzmann factor,

L ∝ e−χ2/2 ≡ e−E

with χ2/2 playing the role of an adimentional energy. The temperature at loop k modifies this to

Lk ∝ e−E/Tk

so that with Tk > 1 we broaden the likelihood distribution, whereas with Tk < 1 we make it
narrower. With very large temperatures, the likelihood hyper-surface is ∼ flat, such that any model
will do it, and most moves in parameter space are acceptable, whereas at low temperature the
landscape is more complex, with peaks and valleys, such that moves in some directions will produce
unacceptably large (in the Metropolis-criterion sense) upward changes in χ2.

For the First Fits, you should start from high T , say, T = Temp ini FF ∼ 100 or more, and
end up with T = Temp fin FF ∼ 1, which is equivalent to starting from errors overestimated by
a factor of

√
100 = 10 and end up with errors as they are (T = 1). High T allows large moves

in the parameter space, which is good to take chains from their random initial positions to more
likely regions in not too many steps. Cooling the system gradually then focus on these regions and
produces a more detailed mapping of the likelihood hyper-surface.

With i RestartChains FF = 1 the parameters of each of the chains are reset to their respective
best values so far before the next loop (or stage), while with i RestartChains FF = 0 the chains
parameters are left wherever they are in parameter space and re-start from there in the next loop
(or stage). Yet another option is to reset only the highest energy chain (worst χ2) to the best global
model so far, which you do with i RestartChains FF = 2.

• Adaptive step sizes: At high T , most small movements in parameter space are accepted and
the system tends to a pure random-walk, whereas at low T large movements have a very large
probability of being rejected, so the chains get stuck. Clearly, fixed step sizes would render the
whole scheme miserably inefficient. In its first version (Cid Fernandes et al. 2004b), STARLIGHT
synchronized the cooling schedule with a step-size reduction schedule calibrated with simulations.
The current version does something much better: It adjusts step sizes dynamically, aiming to reach
a certain efficiency = eff IDEAL FF = number of accepted moves / total number of steps.

To evaluate efficiencies, STARLIGHT must evolve the chains a certain number of iterations (Niter).
This number is calibrated in terms of the number of parameters (Npar = N⋆ + 2)10: Niter =
fN sim FF×Npar, which corresponds, statistically speaking, to fN sim FF moves per parameter.

10Npar = N⋆ + 2, ie, ~x plus the 2 extinctions, since v⋆ and σ⋆ are dealt with separately.
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Every Niter iterations the code pauses to have a look at how the efficiency (ǫ) of each chain is doing.
If ǫ is smaller than desired, step sizes are reduced by a factor

α = Falpha(ǫ−eff IDEAL FF)/eff IDEAL FF (17)

whereas if ǫ > eff IDEAL then α > 1 and steps get larger.

The fini eps FF and ffin eps FF entries in arq config are used to define initial step sizes, computed
dividing the allowed parameter range by fini eps FF in the first loop of the cooling schedule and
by ffin eps FF in the last one. As you have just seen, step-sizes are adjusted dynamically inside
the code, so these two technical parameters are essentially irrelevant.

With i UpdateAlpha = 0 you turn off adaptive step sizes, a very bad idea! With i UpdateAlpha
= 1 all chains will have the same α, determined from the mean efficiency among all N chains chains,
while i UpdateAlpha = 2 sets up one α for each chain.

• Convergence criteria: Now comes the question of how to decide when to stop iterating. Every
Npar× fN sim FF iterations (per chain) we apply a test similar to that proposed by Gelman &
Rubin (1992), which compares the typical variance of a parameter within each of the chains to the
variance of this same parameter between all chains. Doran & Müller (2003) describe this test (as
well as an adaptive step size scheme similar to the one implemented in STARLIGHT). Essentially,
it all boils down to monitoring an adimensional number R, which is large when chains are far apart
in the parameter space and tends to one as their separations converge to distances comparable to
their internal variances (though R = 1 is hard to achieve in practice). The R ini FF entry in
arq config defines when acceptable convergence has been achieved in the first FF loop. This value
may be decreased for subsequent (cooler) loops in the annealing sequence, by setting R fin FF <
R ini FF. Values of 1.1, 1.2 or 1.3 are Ok. The smaller R, the more stringent the criterion and the
longer it takes to satisfy it.

Another decision to be made is if you want all parameters to satisfy the Gelman & Rubin test
individually or if you are happy with an on-average convergence, ie, whether the criterion is applied
to every Rj or just to R. Setting IsGRTestHard FF = 1 you require a strict one-by-one parameter
convergence, whereas IsGRTestHard FF = 0 only requires convergence on average. The latter
option is obviously faster. IsGRTestHard FF = 0 is Ok for the First Fits.

Sometimes chains will take forever to converge, specially if you are very rigorous, doing things
like IsGRTestHard FF = 1 and R fin FF = 1.0. (They will literally take forever if you chose
R fin FF ≪ 1!) To avoid convergence to take too long, the total number of steps per chain in
each cooling loop cannot exceed Npar× fNmax steps FF. Playing with these 3 numbers you can
force the number of steps (∝ computing time) to be controlled by the maximum number of steps
or convergence. Setting R fin FF = 0.0, for instance, you will always be limited by your choice
of fNmax steps FF. Conversely, use a very large value for fNmax steps FF and a reasonable
R fin FF (say, 1.2) if you want to insure convergence.

• Kinematical Parameters: All the above applies to the xj ’s and AV (and AY
V too if you are

using it). The kinematical parameters v⋆ and σ⋆ are not changed during the Metropolis runs, since
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the convolution with the LOSVD kernel at each step would slow things down tremendously. v⋆ and
σ⋆ are only refitted after each of the annealing loops. The code thus goes through a sequence of

1. fix v⋆ and σ⋆;

2. find best ~x and AV ;

3. fix ~x and AV ;

4. find better v⋆ and σ⋆;
11

5. cool T and goto (1)

Hence, if you are more interested in the kinematics (v⋆, σ⋆) than in the populations (~x, AV ), use
many loops, say N loops FF = 10.

7.2.2 Clip & Refit

In most circumstances (in fact in all I have seen so far), the best parameters found during the First
Fits stage already produce a very good spectral fit. Hence, if a pixel could not be fitted in the FF
stage it will very probably not be well fitted at all regardless of how many more models you try, so
we might as well give up fitting it!

This is the role of this second stage. We check which points deviate by “too much” (with respect
to the best Mλ found in the FF stage) and clip them, setting wλ = 0. There are 4 possible
clipping methods: clip method option = NSIGMA, RELRES, ABSRES and NOCLIP, the
latter of which needs not be explained.

• In the “ABSRES” method we clip points with |Oλ − Mλ| > sig clip threshold× the rms of
(Oλ−Mλ) over all (non-masked) pixels. This is not a good choice if your noise changes appreciably
with λ, but it is a reasonable one when eλ is not available.

• ”RELRES” clipping consists of excluding points whose |Oλ −Mλ|/eλ “relative residual” deviates
by more than sig clip threshold× the rms of this same quantity over all non masked points. If eλ

is constant this is equivalent to ABSRES.

• Finally, ”NSIGMA” clipping consists of excluding points whose |Oλ − Mλ| residual deviates by
more than sig clip threshold× the local error in Oλ (better known as eλ). This scheme should
clip less points than ABSRES, since it may allow points with large errors to be kept in the fit, but
with their correspondingly low wλ = 1/eλ weights. This is our favorite method when eλ is reliable.

In all cases, clipped points are signaled with −1 in the wλ column at the bottom of arq out.
You should always check whether STARLIGHT clipped too many points. You can do
this looking at Ntot cliped in the output file or, even better, plotting the wλ = −1 pixels with
a different color in your Oλ versus Mλ comparison. The red-crosses in the residual spectrum
panels in Figs 3–5 mark clipped points, all obtained with clip method option = NSIGMA and
sig clip threshold = 3 (as set in the respective arq config’s). If too many points have been

11Before this step STARLIGHT actually does a quick brute-force fine-tuning of AV (and AY
V ).
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clipped, increase sig clip threshold or go for the NOCLIP method. In fact, if you believe your
masks and/or flags already clean all that is wrong or unfitable in your spectrum, NOCLIP should
be your primary choice.

If N ≥ 1 pixels were deemed to be clipped, STARLIGHT refits the spectrum with the same technical
parameters (Temperature, R-threshold, etc) used in the last FF loop before proceeding.

OBS: If you want to compare the χ2’s of two fits of a same spectrum (say, with different bases),
make sure they both clipped the same points, ie, that both runs fitted the exact same data, or else
take into account these differences. (It is not fair to compare a low χ2 fit which clipped many points
with one which is apparently worse but clipped fewer points.)

• Weight control filter: Sometimes an error spectrum contain pixels whose eλ is much smaller
than all other pixels, and will thus be given much larger weights (wλ = 1/eλ) in the fit. If you are
happy with this (i.e., you trust all your eλ’s), set wei nsig threshold = 0 in arq config and read
no further.

It is possible that such large wλ’s result from artifacts in the reduction process, in which case we
should change wλ to more reasonable values. To correct these suspicious errors we first compute
the mean and rms of wλ over all non flagged nor masked pixels. Then we identify all pixels
with wλ > wlimit = wλ + wei nsig threshold × σ(wλ) and reset them to wλ = wlimit. Setting
wei nsig threshold = 2, for instance, would bring wλ’s larger than 2 sigma over the mean to
wλ = 2 sigma over the mean, still large, but not so much.

The n censored weights entry in the etc block of arq out tells you how many points had their weights
changed by this filter. The value of wlimit is also listed there (wei limit).

OBS: This feature should be turned off (with wei nsig threshold = 0) if you are playing with
weights other than 0 in your masks file, otherwise STARLIGHT will undo your extra-weighting!

7.2.3 Burn-In

By this stage all Markov Chains should be relatively close to each other in parameter space. We could
thus start a final iteration with T = 1 to sample the full probability distribution function (PDF) of
the parameters. This would work like this: Run the chains until they satisfy R < R Burn in (with
IsGRTestHard BurnIn = 0 or 1), throw away the results, freeze-in the adaptive-size scheme, and
iterate another many steps to sample the PDF. STARLIGHT, however, stops when R < R Burn in
is achieved, since it does not attempt to map the PDF nor estimate errors in its parameters
(admittedly a major drawback, but an inevitable one given that we try to be as general as
possible in terms of astrophysical applications of the code). Instead, STARLIGHT seeks a single
best solution, so when the desired convergence is achieved, it goes to the last stage. The Burn-In
stage is the last chance to try a detailed fit with all N⋆ components.

The Burn-In phase fit is carried out at a Temperature = Temp fin FF, which should be = 1 unless
you (think you) know what you are doing. (The only reason to fiddle with Temp fin FF is if your
errors are very wrong, in which case it is much better to fix them instead!)
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7.2.4 EX0s: Fits with a condensed base

In the EX0 stage, the whole fit is fine tuned repeating an annealing loop similar to that in
the FF stage, but with NEX0s loops loops, lowering the temperature from Temp ini EX0 to
Temp fin EX0 and etc. All technical parameters present in the FF stage have a counterpart
in this stage: Temp ini EX0, Temp fin EX0, fini eps EX0s, ffin eps EX0s, R ini EX0s,
R fin EX0s, IsGRTestHard EX0s, N loops EX0s, fN sim EX0s, fNmax steps EX0s, and
eff IDEAL EX0s. If you did not understand them in the FF section, it is because we were not
clear enough, so there is no point in trying again here.:(

• Reduction of the base: The real difference in this last stage is that it offers you the possibility
of throwing away all “irrelevant” components and going for a more refined fitting. When your work
with large bases (say, N⋆ = 100 or more), many of the components are just completely irrelevant,
with very little or no flux at all. The smaller N⋆, the more efficient and the faster the STARLIGHT
numerical scheme is (CPU time scales roughly with N2

⋆ ). Ok, but how are you going to decide
which components are relevant?

First, you need a fiducial population vector ~x upon which to base your decision. Choosing
EXOs PopVector option = MIN in arq config you will pick the best ~x found so far.
Alternatively, you may chose EXOs PopVector option = AVE, in which case the current mean
~x over all chains will be used.

Now let’s decide what “irrelevant” means in practice. With EXOs method option = SMALL
you will throw away all components with xj < EXOs Threshold. For instance, with
EXOs Threshold = 0.02 components with xj < 2% will be discarded.

EXOs method option = CUMUL provides a better way of defining irrelevance. It sorts the
xj and excludes the smaller ones whose light-fractions add up to ≤ EXOs Threshold. With
EXOs Threshold = 0.02, for instance, this would ensure that we lose only < 2% of the flux at λ0

in this base-reduction process.

Why is this better than EXOs method option = SMALL? Suppose you have a base with N⋆ =
100 where component x1 = 80% and the remaining 20% of the light is ∼ equally spread over
the remaining 99 components, with xj = 0.20/99 ∼ 0.002 = 0.2% for j = 2 . . . 100. Using the
SMALL method and EXOs Threshold = 0.02 = 2% would then throw away 99 weak components,
but leave a big 20% deficit in the flux at λ0, which you would need to compensate forcing the
surviving component x1 to be increased to ∼ 100%. You most definitely do not want to do this. In
fact, STARLIGHT will not accept reduced bases with less than max(3, fEX0 MinBaseSize×N⋆)
components. In any case, STARLIGHT will realize if the new fits with a condensed base are worse
than the previous ones, so the final best model will be the one found prior to this ill-fated EX0s
stage.

In both cases arq out reports the size of the condensed base as NEX0s base, and populations out
of this list are given xj = 0. In our fits of 573141 SDSS galaxies with N⋆ = 150 (Base.bc03.S),
available at www.starlight.ufsc.br, NEX0s base is typically 30. This scheme thus provides a crude
but effective compression method (by a factor of 5 in this case).
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• Fine tuning: Since you now have a smaller base, you can afford much more detailed fits. For
instance, you may set up a cooling schedule which takes you to T ≪ 1, which is a way to narrow on
your best solution. StCv04.C11.config, for instance, does this setting Temp ini EX0s = 1 and
Temp fin EX0s = 0.001. Markov Chain Monte Carlo methods are good to sample a likelihood
distribution, but do not care much about finding the best solution (the chains will keep wandering
about within a region around the best model, doing no special effort to get there). This trick is a
way to fool the algorithm, such that it will sample smaller and smaller regions, bracketing the best
χ2. Requiring a large eff IDEAL EX0s (say, 0.5) works in the same direction.

This is one way of using the EX0s stage. That’s how we like to use it, specially when dealing with
large bases. Cooling below T = 1 is also a way of guaranteeing you will fit your data even with
overestimated errors. Indeed, the whole cooling schedule from the FF to the EX0 phases could be
scaled according to your beliefs about how over/under-estimated your errors are. We normally do
things such that the Burn-In phase (the mid-point of the code) runs with T = Temp fin FF = 1,
such that the likelihood distribution is sampled at its correct shape in this stage. You may want to
play with the temperatures, but as long as you start from T ≫ 1 and end up T ≪ 1 things should
work smoothly.

7.2.5 Other entries in arq config

Some quick comments on other things in arq config.

• AV low and AV upp are exactly what their names say: The allowed limits for AV . Physically,
AV low = 0, but you may allow for negative extinction! There are reasons (related to inconsis-
tencies in the base) to think this unphysical choice should be allowed for (e.g., Gallazzi et al. 2005;
Mateus et al. 2006), even though it is unclear how to interpret the results then. (The example fits
of 0784.52327.478.cxt all have AV < 0).

• YAV low and YAV upp are the limits for AY
V . Use zero or close to it unless you know what

you’re doing.

• fn low and fn upp are the allowed range for the normalization factor, i.e., the synthetic flux at
λ0 (

∑

xj) in units of fobs norm. Choose a range centered in 1. For SDSS data and our favorite
choice of normalization (λ0 = 4020 Å), fn low = 0.7 and fn upp = 1.3 suits all galaxies.

• f cut is the minimum allowed flux (in units of fobs norm). Pixels with fluxes smaller than f cut
×fobs norm will be masked. This is a safety feature mainly to help cases where flagλ is not available
and some flux values are too low or even negative. These points would most likely be clipped away
anyway. Using f cut < 0 you effectively turn this off.

• N int Gauss is the number of points within ±6 sigma in the Gaussian LOSVD convolution
integral. N int Gauss = 31 or 51 is fine. If you care very much about σ⋆, use more points.

• If you are running 1000’s of fits, you may have several grid files running in parallel (say, different
nodes of a cluster). With i SkipExistingOutFiles = 1 you make sure that if arq out already
exists then STARLIGHT will skip it and go for the next fit. This allows you to use the same grid

file for several parallel runs. Eventually, if a run is aborted (say, due to a power cut), some of the
files will be incomplete. Check if some of the arq out’s are abnormally small (ls -lS | more will
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show this) and rerun them if needed. Setting i SkipExistingOutFiles = 0 will redo the fit and
overwrite arq out.

• i FitPowerLaw and alpha PowerLaw is an obsolete feature to allow you to include a Fλ ∝
λalpha PowerLaw power-law in the base. If you want a power-law, say, for AGN fits, it is better to
build one and include it in the base-file yourself. This feature will be removed soon.

• i FastBC03 FLAG = 1 speeds up the reading and resampling of BC03/STELIB base-files. Not
applicable to bases with different samplings.

• The example arq config files offer half-a-line clues on what xinit max,
i UpdateAVYAVStepSeparately, i HelpParWithMaxR, prob jRmax,
i HelpPopVectorMove2Average, prob HelpPopVectorMove2Average,
i HelpAVYAVMove2Average, prob HelpAVYAVMove2Average are. Most of these
parameters control the communication between chains, which emulates a smart “proposal
distribution function” (roughly in the directions of largest covariances in parameter space).
Several different combinations were tried before settling for the values given. They are not very
critical anyway.

• NRC AV Default has to do with the rapid-χ2 tricks, explained below. Not critical either,
specially because STARLIGHT will change it if it finds necessary.

7.3 Rapid-χ2 tricks

An important difference (from the computational point of view) with respect to initial versions of
STARLIGHT is that we now perform a series expansion of the

Rλ ≡ −0.4

[

Aλ

AV
− Aλ0

AV

]

(18)

extinction factor in eq. (11), which allows a much faster computation of χ2! Here is a very-very
brief description of this nice trick. Look up Jean Michel Gomes thesis in the Publications section
in www.starlight.ufsc.br, where all the math is presented.

The idea is that when you have a spectrum with many points, it will take long to sum over all λ’s
to compute χ2 (see eq. 15). The trick is to open up the squares in χ2, which produces 3 terms:

χ2 =
∑

λ

w2
λO2

λ − 2
∑

λ

w2
λOλMλ +

∑

λ

w2
λM2

λ (19)

where you already see that the first term needs be computed only once. Now do two things: plug
in our equation for Mλ, which consists of a sum over j = 1 . . . N⋆ components (eq. 11), and rewrite
the extinction term as follows:

10RλAV,j ≡ eρλAV,j =
∞
∑

n=0

(ρλAV,j)
n

n!
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Finally, rearrange the terms and you’ll see that the
∑

λ terms can be grouped into terms which
depend on n and j but do not depend on either ~x or ~AV ! Thus, they can be computed once and
used every time these parameters change (in the Metropolis routine). Of course, you’ll have to
truncate the exp-series at Ne instead of ∞, which requires some care. STARLIGHT starts with
Ne = NRC AV Default terms in the series, but every now and then it checks that the rapid and
“slow” χ2’s are not too different, and adjusts Ne if needed.) The gain in speed should be of order
Nλ/N⋆Ne. It can be even better (by a further factor of Ne ∼ 10) if you split the changes in ~x from
those in ~AV and explore some of the symmetries. For Nλ ∼ 5000, N⋆ ∼ 150, this trick speeds things
up by a factor of over 300! Notice that, because of this trick, STARLIGHT is not twice as fast if
you lower your spectral sampling by a factor of two.

8 The configuration file again

We’ve gone through most of the parameters in arq config. Here is what StCv04.C11.config looks
like.

# Configuration parameters for StarlightChains_v04.for - Cid@Lagoa - 10/Feb/2007 #

#

#

# Normalization lambdas

#

4020.0 [l_norm (A)] = for base spectra only

4010.0 [llow_norm (A)] = for observed spectrum

4060.0 [lupp_norm (A)] = " " "

#

#

# Parameter Limits

#

-1.0 [AV_low (mag)] = lower allowed AV

4.0 [AV_upp (mag)] = upper allowed AV

-0.0001 [YAV_low (mag)] = lower allowed YAV

0.0001 [YAV_upp (mag)] = upper allowed YAV

0.7 [fn_low] = lower allowed Norm. factor = sum x_j

1.3 [fn_upp] = upper allowed Norm. factor = sum x_j

-500.0 [v0_low (km/s)] = lower allowed v0

500.0 [v0_upp (km/s)] = upper allowed v0

0.0 [vd_low (km/s)] = lower allowed vd

500.0 [vd_upp (km/s)] = upper allowed vd

#

#

# Clipping options & Weight-Control-Filter

#

NSIGMA [clip_method_option] = NOCLIP/NSIGMA/RELRES/ABSRES = possible clipping methods

3.0 [sig_clip_threshold] = clip points which deviate > than this # of sigmas

2.0 [wei_nsig_threshold] = weight-control-filter. Use <= 0 to turn this off! (see manual)

#

#

# Miscellaneous

#

50.0 [dl_cushion (A)] = safety margin for kinematical filter!

0.001 [f_cut (units of f_norm)] = Mask/ignore very low fluxes: f_obs <= f_cut

31 [N_int_Gauss] = # of points for integration of kinematical filter

1 [i_verbose] = 0/1 = Quiet/Talkative

0 [i_verbose_anneal] = 0/1/2/3 = Quiet/.../Verborragic

0 [Is1stLineHeader] = 1/0 = Y/N

1 [i_FastBC03_FLAG] = 1 for Fast-rebin of BC03 spectra!

0 [i_FitPowerLaw] = 1/0 = Y/N - include a Power Law in base

-0.5 [alpha_PowerLaw] = PL index, only used if iFitPowerLaw = 1

0 [i_SkipExistingOutFiles] = 1/0 = Y/N - skip or overwrite fits with already existent arq_out

#

#

# Markov Chains technical parameters

#

7 [N_chains] = # of Markov Chains

0.50 [xinit_max] = max(x_j) for initial random chain pop-vecs

0 [i_UpdateEps] = 1/0 = Y/N. Not well tested: use 0!

2 [i_UpdateAlpha] = 0/1/2. 1 & 2 update step-sizes dynamically. 0 turns this off.

2.0 [Falpha] = step-updating-factor.

1 [i_MoveOneParOnly] = 1/0 = Y/N. Not tested/debugged! Use 1!

1 [i_UpdateAVYAVStepSeparately] = 1/0 = Y/N.

1 [i_HelpParWithMaxR] = 1/0 = Y/N. Help convergence of ParWithMaxR
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0.2 [prob_jRmax] = prob to pick ParWithMaxR

1 [i_HelpPopVectorMove2Average] = 1/0 = Y/N. Help x convergence

0.4 [prob_HelpPopVectorMove2Average] = prob of inverting sign of x-move to go towards mean

1 [i_HelpAVYAVMove2Average] = 1/0 = Y/N. Help AV/YAV convergence

0.4 [prob_HelpAVYAVMove2Average] = prob of inverting sign of AV/YAV-move to go towards mean

10 [NRC_AV_Default] = initial # of terms in the RC AV-series

#

#

# First Fits (FF) technical parameters

#

1.0e2 [Temp_ini_FF] = initial Temperature

1.0 [Temp_fin_FF] = final Temperature

1.0e1 [fini_eps_FF] = initial step-size (fraction of low->upp range)

1.0e2 [ffin_eps_FF] = final step-size (fraction of low->upp range)

1.3 [R_ini_FF] = initial GR-R convergence threshold

1.3 [R_fin_FF] = final GR-R convergence threshold

0 [IsGRTestHard_FF] = 0/1 = Hard/Soft GR-R convergence criterion

3 [N_loops_FF] = # of annealing loops

1 [i_RestartChains_FF] = 1/0 = Y/N = Reset chains to best pars after each loop

1.0e1 [fN_sim_FF] = x N_par = length of each chain loop...

1.0e4 [fNmax_steps_FF] = max length of each chain loop...

0.23 [eff_IDEAL_FF] = ideal efficiency, used to optimize step-sizes

#

#

# GR R-threshold & Method for Burn-In loop

#

1.2 [R_Burn_in] = GR-R convergence threshold for burn-in

0 [IsGRTestHard_BurnIn] = 0/1 = Hard/Soft GR-R convergence criterion

#

#

# EX0s technical parameters

#

MIN [EXOs_PopVector_option] = MIN/AVE = Use x_min or x_ave to define condensed base

CUMUL [EXOs_method_option] = CUMUL/SMALL = method to define irrelevant components

0.02 [EXOs_Threshold] = Irrelevance threshold

1.0 [Temp_ini_EX0s] = Analogous to FF entries above!

1.0e-3 [Temp_fin_EX0s] = "

1.0e2 [fini_eps_EX0s] = "

1.0e3 [ffin_eps_EX0s] = "

1.2 [R_ini_EX0s] = "

1.0 [R_fin_EX0s] = "

1 [IsGRTestHard_EX0s] = "

5 [N_loops_EX0s] = "

1 [i_RestartChains_EX0s] = "

1.0e2 [fN_sim_EX0s] = "

1.0e3 [fNmax_steps_EX0s] = "

0.50 [eff_IDEAL_EX0s] = "

1 [IsScaleNstepsInEX0sFits] = 1/0 = Y/N = Scale numbers of steps by # of EX0 components.

1 [IsNoKin4LargeBaseInEX0sFits] = 1/0 = Y/N = Stop v0 & vd fits in EX0s for large bases

0.0 [frac_NoKin4LargeBaseInEX0sFits] = Will stop v0 & vd fits if EX0-bases > frac_... * N_base

0.1 [fEX0_MinBaseSize] = EX0-fits will use at least fEX0_MinBaseSize * N_base components

Cid@Lagoa - 10/February/2007

OBS: This config is a reformatted (for v04) & renamed version of the

StCv03.t02.config used in the config tests of Jan/2007.

Technical parameters you may want to play with to obtain FAST, MEDIUM

& SLOW fits:

--------------------------------

| FAST | MEDIUM | LONG |

--------------------------------

| 5 | 7 | 12 | [N_chains]

| 3 | 5 | 10 | [N_loops_FF & *_EX0s]

| 1.3 | 1.2 | 1.1 | [R_ini_FF & R_fin_FF & *_EX0s]

| 0 | 0 or 1 | 1 | [IsGRTestHard_FF & *_BurnIn & *_EX0s]

--------------------------------

The comments at the bottom of the file give you some guidance as to what you may want to play
with to produce fast, medium or slow fits.

The fits of nearly 600k SDSS galaxies discussed in Asari et al. (2007) were carried out with a medium
-speed configuration, but we have tested both faster and slower fits and results do not change in
any significant way. We repeat that given the pseudo-random-search nature of the fitting scheme,
it may well happen that a fast fit produce a worse figure of merit (like χ2 or adev) than a slow one.

Fits with different config parameters surely differ in the details. You can verify this comparing the
*C11* with the *C99* example fits. Notice, however, that for the same reasons explained above
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two fits of a same galaxy with identical configs will still differ if they use different seed for the
random number generator!! (You may try this yourself repeating one galaxy in the grid file). Such
differences can be quite substantial in individual components of ~x, but the overall picture should
not change appreciably. Again, read our papers to learn how to compress STARLIGHT results to
achieve a more robust description of the fits.

9 Some examples

This distribution includes multiple STARLIGHT fits to each of the 3 input spectra listed in §4.1.4.
Figs 3–5 show the results.

These examples illustrate some of the things one must be aware of when fitting galaxy spectra.
First, the configuration does not make much difference, provided you sweep the parameter space
minimally well. Second, as if needed be said, the base is important. Fits of 0414.51901.393.cxt
with bases N and S, for instance, differ. While the overall population vector is similar in both cases,
with base S a small amount of light is allowed to go into old populations of low Z⋆ which are not
present in base N. This has a minor effect upon ~x but a large one in the mass-fractions vector µ,
given the much larger M/L of old populations. Hence, a small amount of light in old pops may
translate into most of the mass. The non-linear transformation from what you see to what you get
(light to mass) is of course one of those nasty aspects of stellar population synthesis you just have
to get used to. There are also implications for the resulting AV values (at the 0.1 mag level in this
case).

In the case of 0784.52327.478.cxt, one sees that including more base elements (ie, going from
base N to base S) has the effect of spreading the light concentrated in a single pop to adjacent bins,
which are spectrally similar.

Life may not be so degenerate if you reduce your parameter space (= use a small base), but if you
do go for large N⋆, these are some of the issues you’ll have to face.

Notwithstanding these and other caveats, STARLIGHT has been a very useful tool for our group,
so we hope you’ll find it useful too.
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Figure 3: 4 fits of a star-forming SDSS galaxy 0414.51901.393.cxt, varying the base and extinc-
tion law. Left: The top panel shows the data (Oλ, black) and STARLIGHT fit (Mλ, red). The
green line is the eλ = w−1

λ error spectrum, with gaps and yellow lines marking bad (flagλ ≥ 2)
pixels. The bottom panel show the Oλ − Mλ residual spectrum. Magenta corresponds to masked
windows (emission lines), green marks flagged pixels and red crosses mark clipped points. Right:

Age distribution in the population vector, expressed as a light (top) or mass (bottom) fraction. The
“bar-code” panel marks the ages included in the base.
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Figure 4: 4 fits of the early type SDSS galaxy 0784.52327.478.cxt, varying the base and extinction
law.
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Figure 5: 4 fits of n5377x.nuc.txt.DR, varying the base and config. Note the flat eλ spectrum,
because neither error nor flag spectra are available in this case. These fits used the general mask
Masks.EmLines.SDSS.gm, which does not include [NII]λ5200, present in this LINER/HII Tran-
sition Object. (Data from Cid Fernandes et al. 2004a and González Delgado et al. 2004).
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10 Wish list

There are several points where STARLIGHT still needs improvements.

• Multiple Extinctions: As it is widely known, a single foreground dust screen is a naive model
for galaxies. As it is also widely known, going beyond this simplest scenario brings about a number
of computational problems and astrophysical degeneracies. . . In some cases, like ULIRGS and other
extremely dusty systems, however, there is no escape but to allow for multiple AV ’s if one wants to
be remotely realistic.

STARLIGHT internally handles an N⋆-dimensional extinction vector ~AV , but on input we allow AV,j

to assume only 1 or 2 values (§4.3). As we speak, STARLIGHT is being adapted to allow for up to
N⋆ extinctions by changing the meaning of the YAV flag in arq base. We envisage applications with
relatively few base elements (small N⋆), so that degeneracies between populations and extinctions
are held under control.

Until this version is fully debugged and becomes public, a way to fool STARLIGHT is to include
reddened spectra in the base itself. This has been tried and found to work to a certain extent. The
challenge here is to interpret the results quantitatively.

• Rectified spectra: Very often the observed spectrum is not flux calibrated, because of changing
weather, variations in detector response, difficulties in joining independently taken blue and red
spectra, and other calibration issues. In these cases one has to forget the shape of the continuum
and analyze only the absorption line information. Rectifying the spectrum is the normal procedure
in this case.

Paradoxically, it is harder to deal with this simpler problem. The reason is that rectification
invalidates the rapid-χ2 tricks employed in the code, at least in the way they were coded in. While
there are ways of using STARLIGHT to deal with rectified spectra, they are rather cumbersome,
so we will not explain them here. A future version will be adapted to deal with these cases.

• Sampling: As explained in §4.1.3, our sampling routine needs to be improved.

• Errors: The most serious drawback of STARLIGHT, as it is, is that it does not provide error
estimates on its parameters. Most likely, we will never provide this, because (1) it is an ugly issue,
and (2) it is hard (impossible?) to think of an error estimation scheme applicable to all sorts of
problems STARLIGHT is expected to cope with. Our suggestion to estimate errors is to do it with
Monte Carlo simulations: Perturb your data and fit it many times, and evaluate uncertainties from
the ensemble of solutions. A general idea on what sort of errors you should expect can be found
in our papers, as well as in those of the “competing” codes, some of which do tackle this issue in a
comprehensive manner.

• SED-fitting: What if you wanna fit a high resolution optical spectrum plus the H and K band
fluxes at the same time? STARLIGHT is not prepared to deal with this. There are ways to model
spectra of variable resolution playing with the config parameters and fixing the kinematics, but they
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have not been thoroughly tested.
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