What stellar populations can tell us about the evolution of the mass-metallicity relation in SDSS galaxies

Natalia Vale Asari UFSC, Brazil **Observatoire de Paris, France** natalia@astro.ufsc.br

Grazyna Stasinska Observatoire de Paris, France

Roberto Cid Fernandes, Jean Michel Gomes, Marielli Schlickmann, Abilio Mateus, William Schoenell UFSC, Brazil

Digital Sky Survey objects we have

Histories of mass and stellar metallicity

Bins in log M/M_{sun}, 0.3 dex-wide, centered in:

A: 10.0 D: 10.9 B: 10.3 E: 11.2 F: 11.5 C: 10.6

Given the ages and metallicities of the SSPs in a galaxy, we recover the history of the conversion of gas into stars and of metal formation. We group galaxies with similar present-day stellar mass. We find that the *more massive* a galaxy is today, the *faster* it has formed stars and produced metals.

The evolution of the M_{\star} -Z_{*} relation

Snapshots of M_{*}–Z_{*}

Another way to study the evolution of galaxies is to look at a snapshot of the mass vs. metallicity $(M_{\star}-Z_{\star})$ relation for a given lookback time. The snapshots we show are for the *same set* of galaxies and for the stellar metallicity. This is the first time such a study is made.

More details * Paper: Vale Asari, N.; Stasinska, G.; Cid Fernandes, R.; Gomes, J. M.; Schlickmann, M.; Mateus, A.; & Schoenell, W. 2009, MNRAS, 396, L71 * STARLIGHT and Virtual Observatory: http://starlight.ufsc.br/