Propriedades físicas de galáxias observadas no ultravioleta

André Luiz de Amorim

Orientador:

Prof. Dr. Roberto Cid Fernandes Jr.

Coorientador:

Prof. Dr. Abilio Mateus Jr.

• • •

Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Curso de Pós-Graduação em Física

Dissertação de mestrado apresentada ao Departamento de Física da UFSC em preenchimento parcial dos requisitos para obtenção do título de Mestre em Física.

Trabalho financiado pela Capes.

Florianópolis (SC) – 30 de novembro de 2011

Dedica

Agradecimentos

Agradece

Resumo

Com o advento dos mega-surveys, e o imenso volume de dados gerados por eles, surge a necessidade de desenvolver técnicas de data mining. Um exemplo bastante conhecido é programa STARLIGHT, que tem como entrada uma base de populações estelares simples e espectros de galáxias do Sloan Digital Sky Survey (SDSS), e gera como saída informações relacionadas ao histórico de formação estelar das galáxias. Baseada inteiramente no espectro óptico, esta análise serve de guia para interpretar dados em outras faixas espectrais para galá-xias de diferentes tipos (como as que estão formando estrelas, as galáxias ativas de diferentes classes, as passivas e as aposentadas). O atual data release do Galaxy Evolution Explorer (GA-LEX) inclui o crossmatch com os objetos do SDSS. Isso permite correlacionar as informações resultantes do STARLIGHT com dados de fotometria no ultravioleta. Este trabalho...

Abstract

TODO: Abstract.

Sumário

1	Intr	dução	1
	1.1	A nova era da astronomia	1
		1.1.1 Mega-levantamentos de dados	1
		1.1.2 Mineração de dados	3
	1.2	O catálogo de propriedades físicas do STARLIGHT	3
	1.3	Este trabalho	5
		1.3.1 Organização deste trabalho	5
2	0 G	laxy Evolution Explorer (GALEX)	7
	2.1	Objetivos do GALEX	7
	2.2	Histórico do estudo do céu no UV	0
	2.3	Resultados obtidos pelo GALEX	0
	2.4	Data releases e banco de dados	2
3	Este	ndendo a base de dados <i>SDSS/STARLIGHT</i> para o ultravioleta 1	5
	3.1	Banco de dados do SDSS	5
		3.1.1 Migração de OODBMS para RDBMS	5
		3.1.2 <i>SkyServer</i>	6
		3.1.3 <i>CasJobs</i>	6

Re	Referências Bibliográficas I				
A	Que	ries SQL		47	
	5.2	Trabalh	os futuros	46	
	5.1	Este tra	balho	46	
5	Con	clusões e	e perspectivas	46	
		4.4.1	A separação entre galáxias aposentadas e passivas	45	
	4.4	Discuss	ão	45	
	4.3	Proprie	dades físicas no diagrama cor–cor	37	
	4.2	Classifi	cação das galáxias	33	
	4.1	Diagran	na cor–cor	30	
4	Aná	lise da a	mostra STARLIGHT+UV	30	
	3.5	Definiçã	ão da amostra <i>STARLIGHT</i> + <i>UV</i>	27	
		3.4.3	Correções aplicadas à fotometria UV	26	
		3.4.2	Dados UV	24	
		3.4.1	Relação de <i>crossmatch</i> entre <i>SDSS</i> e <i>GALEX</i>	23	
	3.4	Obtende	o dados UV para a amostra STARLIGHT	23	
	3.3	Identifie	cação cruzada entre SDSS e GALEX	22	
		3.2.3	Amostra do STARLIGHT	20	
		3.2.2	Estrutura do banco de dados	20	
		3.2.1	Importação para o RDBMS	19	
	3.2	Banco d	de dados do <i>STARLIGHT</i>	19	

Lista de Figuras

1.1	Amostra de ajuste de espectro com o starlight	4
2.1	Curvas de transmissão dos filtros do GALEX	8
2.2	Footprint dos surveys GALEX AIS, MIS e SDSS	9
2.3	Diagrama cor-margnitude em ultravioleta.	11
2.4	Tela do programa <i>GalexView</i>	13
3.1	Telas do <i>SkyServer</i>	17
3.2	Tela do <i>CasJobs</i>	18
3.3	Esquema do banco de dados do starlight	21
3.4	Diagrama de <i>redshift</i> contra magnitude <i>r</i>	28
3.5	Histogramas das medidas da amostra starlight +UV	29
4.1	Densidade de galáxias no diagrama cor–cor UV	31
4.2	Diagrama cor-cor UV para os diversos parâmetros starlight	32
4.3	Diagrama de diagnóstico WHAN.	34
4.4	Cores ultravioleta no diagrama WHAN.	34
4.5	Cores ultravioleta no diagrama BPT	35
4.6	Diagrama cor–cor UV de acordo com o tipo de galáxia	36
4.7	Histogramas de cores para as classes de galáxias.	36

4.8	Idade média das SSP ponderada em fluxo no diagrama cor-cor UV	38
4.9	Idade média das SSP ponderada em massa no diagrama cor-cor UV	39
4.10	Metalicidade média das SSP ponderada em fluxo no diagrama cor-cor UV	40
4.11	Metalicidade média das SSP ponderada em massa no diagrama cor-cor UV.	41
4.12	Massa estelar das galáxias no diagrama cor-cor UV	42
4.13	Extinção por poeira no diagrama cor-cor UV	43
4.14	Largura equivalente de H α no diagrama cor–cor UV	44
A.1	Query para atualizar os índices da amostra de galáxias do STARLIGHT	47
A.2	Query listando identificações entre SDSS e surveys do GALEX	48
A.3	Match entre os objetos da amostra do STARLIGHT e GALEX	49
A.4	Query para listar as detecções por banda UV e survey	50
A.5	Extração da amostra de galáxias.	51

Lista de Tabelas

2.1	Surveys realizados pelo GALEX.	9
2.2	Campos observados em cada General Release do GALEX	12
3.1	Identificações entre SDSS DR7 e survey AIS do GALEX GR6	23
3.2	Identificações entre SDSS DR7 e survey AIS do GALEX GR6	23
3.3	Descrição dos campos da tabela xSDSSDR7	24
3.4	Número de detecções por banda no catálogo UV do STARLIGHT	25
3.5	Propriedades físicas das galáxias utilizados na amostra.	27

Capítulo 1

Introdução

1.1 A nova era da astronomia

Os primeiros *surveys*¹ da astronomia extragalática começaram a ser feitos de forma sistemática na década de 80 (Huchra 1988). Foram observadas cerca de 2400 galáxias pelo *Center for Astrophysics* em Harvard (Huchra et al. 1983) e aproximadamente 2000 galáxias pelo *Southern Redshift Survey* (da Costa et al. 1988).

Nos últimos anos, com o advento dos *mega-surveys*, está ocorrendo uma revolução na forma de fazer ciência na astronomia. Os diversos *surveys* em execução atualmente estão produzindo dados a uma taxa da ordem de petabytes por ano. Este talvez seja o primeiro campo da ciência onde as informações coletadas por máquinas tenham – nas próximas décadas – um volume maior do que os seres humanos são capazes de digerir. Uma espécie de *Singularidade Tecnológica*² da astrofísica, onde máquinas coletam, analizam e classificam dados. O papel do cientista num cenário como este ainda não está muito claro (Norris 2010).

1.1.1 Mega-levantamentos de dados

O *Sloan Digital Sky Survey (SDSS*; York et al. 2000), é referência quando falamos em *surveys* modernos. Em seus 8 anos de funcionamento, obteve imagens em 5 filtros (ver figura 2.1) de

¹Um *survey* astronômico é um levantamento de informações ou mapeamento de regiões do céu utilzando telescópios e detetores.

²O termo *Singularidade tecnológica* se refere a um futuro hipotético onde uma inteligência superior à humana emerge através da tecnologia. Qualquer previsão após tal fato se torna muito difícil, algo similar a um horizonte de eventos, dada a dificuldade em entender uma inteligência superior à humana.

um quarto do céu e espectros de um milhão de galáxias. O seu catálogo contém 4 terabytes de dados fotométricos e espectroscópicos, sem contar as imagens. O *SDSS* foi praticamente o primeiro *survey* a conseguir popularizar o acesso aos seus dados. Estes foram feitos públicos desde o início, iniciando uma "corrida do ouro" no seu vasto volume de dados. Esta filosofia é compartilhada hoje pela grande maioria dos *surveys* de grande porte.

Existem diversos *surveys* em operação atualmente. O *Wide-field Infrared Survey Explorer* (WISE) é um telescópio espacial da NASA³, que está mapeando o céu inteiro nas faixas de 3,4, 4,6, 12 e 22µm do infravermelho (Wright et al. 2010). O *Visible and Infrared Survey Telescope for Astronomy* (VISTA) é um telescópio no Chile fazendo um *survey* do céu do hemisfério sul no infravermelho próximo (Born 2010). Tratado com mais detalhes no capítulo 2, o *Galaxy Evolution Explorer* (*GALEX*) mapeou o céu em ultravioleta. O *Kepler* é um telescópio espacial da NASA (Borucki et al. 2010), semelhante ao WISE, e está fazendo um survey de uma região da Via Láctea para descobrir a fração de estrelas com planetas similares à Terra na nossa Galáxia. Convém mencionar também o 2*dF Galaxy Redshift Survey* (2dFGRS; Colless 1999) e o *Two Micron All Sky Survey* (2MASS; Skrutskie et al. 2006). Embora estes *surveys* já tenham sido concluídos, os seus dados permanecem disponíveis publicamente.

O projeto JPAS (*Javalambre Physics of the Accelerating Universe Survey*) é um *survey* que pretende mapear 8000 graus quadrados do céu em 56 cores(Benítez et al. 2009). Os filtros, de banda estreita, irão cobrir toda a região óptica, formando um espectro de baixa resolução para cada pixel do survey. Serão mais de 200 terabytes de dados brutos^[citation needed]. O projeto é uma colaboração entre Espanha e Brasil, com mais de 70 pesquisadores e engenheiros envolvidos incluindo integrantes do Grupo de Astrofísica da UFSC. O objetivo do *survey* é a exploração das causas da aceleração do universo, relacionadas à energia escura. Entretanto, uma quantidade considerável de ciência adicional poderá ser feita com base no espectro de uma região tão ampla do céu. Seu início está previsto para 2013.

O LSST (*Large Synoptic Survey Telecope*) mapeará metade do céu a cada mês, aproximadamente, durante cerca de dez anos (Ivezic et al. 2008). As suas operações científicas tem início previsto para 2020. Serão mais de um petabyte em imagens brutas por ano, muito mais do que poderia ser revisado por humanos. Este *survey* também pretende explorar a natureza da energia escura, embora, da mesma forma que o JPAS, os dados possam ser aproveitados para diversos outros fins.

³NASA Explorer Mission - http://explorers.gsfc.nasa.gov/missions.html

1.1.2 Mineração de dados

Tradicionalmente astrônomos armazenam seus dados em arquivos texto ou binários contendo um registro por linha, de um forma tecnicamente conhecida como *flat file*. Buscas neste tipo de banco de dados são feitas examinando individualmente cada registro do arquivo. Com o volume de dados obtido, por exemplo, pelo *SDSS* ou pelo *GALEX* (aproximadamente 222 milhões de objetos, 34 mil campos), o uso de arquivos simples para armazenamento de dados se torna inviável.^[citation needed] É preciso "profissionalizar" o gerenciamento de dados de um *survey* desta escala, e aprender a trabalhar com volumes imensos de dados.

Técnicas de detecção de padrões em grandes conjuntos de dados são conhecidas como *Mineração de dados*, e tem um interesse crescente nos últimos anos (Apte 2011). Estas técnicas tem naturalmente um caráter interdisciplinar, indo desde aplicações científicas até áreas como Economia (Spanos 2000) e Inteligência de Mercado⁴.

A equipe de arquivamento do *SDSS* desenvolveu uma ferramenta chamada *CasJobs* (ver seção 3.1.3), que permite que múltiplos usuários possam fazer buscas e coleta de dados em seu banco de dados através. Embora o *CasJobs* não seja estritamente falando uma ferramenta de mineração de dados, ele facilita e muito o acesso aos dados de um *survey*. O presente trabalho se baseia fortemente no uso desta ferramenta.

1.2 O catálogo de propriedades físicas do STARLIGHT

O STARLIGHT é um código de síntese espectral desenvolvido por Cid Fernandes et al. (2005). Dado um espectro de galáxia, o programa retorna as frações de massa e luz correspondentes às populações estelares componentes desta galáxia. O STARLIGHT expressa o espectro desta galáxia como uma combinação linear de espectros de populações estelares simples⁵ (SSP) com diferentes idades e metalicidades. Matematicamente isto é equivalente a encontrar as componentes do vetor espectro da galáxia numa base de espectros de SSP, ou seja,

$$F_{\lambda} = \sum_{i=1}^{N_{\star}} x_i F_{\lambda}^{\star}(t_i, Z_i) g_{\lambda}(A_{V,i}).$$

⁴Ferramentas como OLAP (*On-line Analytical Processing* são usadas por empresas para avaliação de mercado e tomada decisão, agindo sobre um grande volume de dados.

⁵Uma SSP consiste num conjunto de estrelas formadas ao mesmo tempo com a mesma metalicidade.

Figura 1.1: Amostra de ajuste com o starlight para o espectro de SDSS J1119+5130 (Cid Fernandes 2006, figura 2). O espectro observado é mostrado em preto, enquanto o modelo aparece em vermelho. Linhas de emissão (não modeladas) e *pixels* ruins são mostradas em ciano. Os espectros na parte inferior são a soma das SSP para as faixas de idade dadas na figura. A contribuição percentual no fluxo de cada grupo de idade é mostrada na legenda, entre parênteses.

Nesta equação, F_{λ} é o fluxo em cada comprimento de onda. Os N_{\star} espectros de base $F_{\lambda}^{\star}(t_i, Z_i)$, com t_i e Z_i representando respectivamente a idade e a metalicidade do elemento de base, são somados com pesos x_i . O conjunto $\{x_i, i = 1, 2, ..., N_{\star}\}$ é chamado vetor de população para a galáxia sendo considerada. O termo g_{λ} corrige o espectro pelo efeito de extinção interestelar. São ao todo 45 SSP diferentes utilizadas na base. O problema torna-se então um ajuste num espaço de parâmetros bastante grande. A figura 1.1 mostra o ajuste feito para uma galáxia do SDSS.

Analisando o vetor de população das galáxias é possível obter algumas de suas propriedades físicas. É possível também extrair as medidas das linhas de emissão – não modeladas no ajuste – com bastante precisão. A técnica foi aplicada aos espectros de galáxias do *SDSS*, e o resultado da síntese gerou um catálogo de propriedades físicas e linhas de emissão de quase um milhão de galáxias.

1.3 Este trabalho

Historicamente a região ultravioleta (UV) do espectro eletromagnético tem sido pouco estudada na astronomia. Não por falta de interesse dos astrônomos, mas pelo simples fato de que observações feitas de dentro da atmosfera são impossibilitadas pela camada de ozônio. É preciso ir para o espaço. Foram lançados diversos satélites com o intuito de estudar o céu em UV (ver seção 2.2). O *GALEX* foi o primeiro telescópio espacial a fazer um *survey* do céu inteiro em UV. A missão tem como objetivo estudar a evolução da taxa de formação estelar em galáxias (Martin et al. 2005).

Embora este e outros grandes *surveys* tenham um grande valor individualmente, esta é somente a ponta do *iceberg*. Cruzando informações de *surveys* em diversos comprimentos de onda pode-se ter uma nova percepção da relação entre os processos físicos subjacentes. Este trabalho utiliza dados obtidos dos *surveys SDSS* e *GALEX*, nas bandas espectrais óptica e UV, respectivamente. Estes dois *surveys* foram indexados (ver seção 3.3) de forma a facilitar a identificação entre as suas detecções. A técnica desenvolvida por eles pode ser aplicada em virtualmente qualquer outro *survey* astronômico.

As galáxias utilizadas na síntese do STARLIGHT foram obtidas do catálogo do *SDSS*. Neste trabalho foi feita a identificação destas galáxias no catálogo do *GALEX*, obtendo-se assim as suas medidas de fotometria UV. Este conjunto de dados formou uma amostra de galáxias com as suas propriedades físicas, cores ópticas e cores UV. As galáxias desta amostra são classificadas utilizando o diagrama de diagnóstico WHAN, conforme Cid Fernandes et al. (2011). Este método de classificação utiliza as linhas de emissão H α e [N II] λ 6584 para separar as galáxias nas classes de formação estelar, núcleo ativo, "aposentadas" e passivas. As cores UV das galáxias de cada classe são analisadas em busca de correlações e tendências.

1.3.1 Organização deste trabalho

No capítulo seguinte a missão *GALEX* é tratada em mais detalhes. As características do *survey* são discutidas, e são apresentados alguns resultados importantes. Os produtos gerados pelos *surveys* do *GALEX* e o acesso a estes dados são descritos no final do capítulo.

1.3 Este trabalho

O terceiro capítulo introduz o uso de bancos de dados em astronomia. Em seguida é tratado do problema genérico de identificação cruzada (*crossmatch*) de objetos em catálogos de *surveys* astronômicos. Os bancos de dados do *SDSS* e do starlight são apresentados, e processo de *crossmatch* é feito entre os catálogos do *SDSS* e do *GALEX*. Finalmente define-se uma amostra com magnitudes absoutas (ópticas e UV) e propriedades físícas das galáxias.

No quarto capítulo é feita a análise da amostra obtida no capítulo anterior. As galáxias são classificadas através do diagrama WHAN e as propriedades físicas destas galáxias (obtidas do starlight) são analisadas de acordo com as suas cores ópticas e UV.

No quinto e último capítulo são apresentadas as conclusões e perspectivas deste trabalho.

As queries SQL utilizadas neste trabalho estão listadas no apêndice A.

Capítulo 2

O Galaxy Evolution Explorer (GALEX)

2.1 Objetivos do GALEX

O *Galaxy Evolution Explorer* (*GALEX*) é um telescópio espacial de pequeno porte da NASA¹, lançado em 28 de abril de 2003 para conduzir um *survey* de todo o céu numa faixa espectral do UV, entre 1350 e 2750Å. O objetivo principal do *GALEX* é estudar a evolução da taxa de formação estelar em galáxias (Martin et al. 2005). Os dados coletados pela missão são publicados em *Data Releases* periódicos, denominados *General Releases*. Este trabalho foi realizado sobre os dados do sexto *General Release*, GR6.

A missão consiste em uma série de *surveys* fotométricos e espectroscópicos (ver tabela 2.1). Destes, os principais *surveys* são o *All Sky Survey* (AIS) e o *Medium Imaging Survey* (MIS), que foram utilizados neste trabalho. O imageamento é feito em duas bandas espectrais: ultravioleta distante (*far ultraviolet*, FUV), de 1350 a 1750Å, e ultravioleta próximo (*near ultraviolet*, NUV), de 1750 a 2750Å. As curvas de transmissão dos filtros utilizados nessas bandas podem ser visto na figura 2.1. A espectroscopia é feita inserindo-se no caminho ótico um *grism*, que consiste num prisma combinado com uma rede de difração. Obtém-se deste modo um espectro de baixa resolução para cada objeto na imagem, conforme descrito por Morrissey et al. (2007).

Os *surveys* do *GALEX* foram planejados de forma a se valer de outros *surveys* já existentes em outros comprimentos de onda. A figura 2.2 mostra a sobreposição da área observada ² pe-

¹NASA Small Explorer (SMEX) - http://explorers.gsfc.nasa.gov/missions.html

²*Footprint*, no linguajar astronômico.

Figura 2.1: Curvas de transmissão dos filtros do *GALEX* (linhas sólidas), medidas em laboratório (Morrissey et al. 2005). Os comprimentos de onda efetivos dos filtros são $\lambda_{FUV} = 1528$ Å e $\lambda_{NUV} = 2271$ Å. Para comparação são mostradas as curvas para os filtros do *SDSS* (linhas tracejadas). Dados retirados do *website* mantido por Peter Capak: http://www.astro.caltech.edu/~capak/cosmos/filters/

Tabela 2.1: *Surveys* realizados pelo *GALEX*. O CAI consiste em observações de anãs brancas para calibração. A cobertura do céu é dada em graus quadrados. No caso do NGS, a magnitude limite é dada em unidades de densidade superficial de magnitude. Informações retiradas de Martin et al. (2005).

Survey	Cobertura do céu	Mag. AB limite
Calibration Imaging (CAI)	-	_
All-sky Imaging Survey (AIS)	26 000	20.5
Medium Imaging Survey (MIS)	1 000	23
Deep Imaging Survey (DIS)	80	25
Nearby Galaxy Survey (NGS)	80	27.5
Wide Field Spectroscopic Survey (WSS)	80	20
Medium-deep Spectroscopic Survey (MSS)	8	21.5–23
Deep Spectroscopic Survey (DSS)	2	23–24

Figura 2.2: *Footprint* dos *surveys GALEX* GR2+3 AIS (azul), MIS (vermelho) e SDSS DR6 (verde), de Budavári et al. (2009).

los *surveys* AIS e MIS do *GALEX* e do *Sloan Digital Sky Survey* (*SDSS*). O objetivo primário da missão do *GALEX* é calibrar da taxa de formação estelar no universo local e a determinar o histórico cosmológico de formação estelar entre os *redshifts* 0 < z < 2 (Martin et al. 2005). A comparação com dados de *surveys* em outros comprimentos de onda tem um papel fundamental no cumprimento deste objetivo.

2.2 Histórico do estudo do céu no UV

A camada de ozônio, tão desejável pela proteção que oferece aos seres vivos, cobra a sua taxa na astronomia. Observações na banda UV precisam ser feitas fora da atmosfera terrestre, portanto não é de se estranhar que o trabalho nesta faixa espectral tenha progredido menos do que na faixa do óptico e do infravermelho.^[citation needed]

O primeiro trabalho sistemático de observação em UV foi feito pelo *Orbiting Astronomical Observatory 2* (Code et al. 1970), obtendo fotometria e espectroscopia de estrelas brilhantes, aglomerados globulares e galáxias próximas. Durante as décadas de 1970 e 1980, este e outros satélites como o TD-1 (Boksenberg et al. 1973), o *Astronomical Netherlands Satellite* (van Duinen et al. 1975) e o *International Ultraviolet Explorer* (Kondo & Wamsteker 1987) – o primeiro satélite a utilizar um detetor de imageamento UV – forneceram os dados fundamentais para os modelos de síntese de população estelar de galáxias. *Surveys* de campo amplo foram feitos por uma câmera lunar erguida por astronautas da *Apollo 16* (Carruthers 1973), a bordo do *Skylab* (Henize et al. 1975) e pelo instrumento *FAUST* a bordo do *Spacelab* (Bowyer et al. 1993). Muitas imagens UV também foram obtidas pelo *Ultraviolet Imaging Telescope* em duas missões em ônibus espacial (Stecher et al. 1997).

2.3 Resultados obtidos pelo GALEX

o *GALEX* fez o primeiro *survey* do céu inteiro em UV. As regiões próximas ao plano da Galáxia foram evitados para não danificar os detetores. Pode-se ter uma idéia do sucesso desta missão considerando a grande quantidade de artigos publicados³. Abaixo segue um resumo dos resultados mais notáveis.

Wyder et al. (2007) analisam a distribuição de galáxias em função da cor UV e da magnitude absoluta no universo local. Esta distribuição é conhecida como *Diagrama Cor–Magnitude* (CMD, na sigla em inglês para *Color-Magnitude Diagram*). Os autores usam *redshifts* e fotometria óptica obtidas do *SDSS* junto com fotometria UV do *survey* MIS do *GALEX*. A amostra do *SDSS* é correlacionada com a do *GALEX* procurando o objeto do *GALEX* mais próximo de cada objeto *SDSS* até um limite de 4 segundos de arco.

O diagrama cor-magnitude elaborado por Wyder et al. mostra a separação das galáxias nas

³Há uma lista com as mais de 500 publicações relacionadas ao projeto do *GALEX* em http://www.galex.caltech.edu/researcher/publications.html

Figura 2.3: Diagrama cor-margnitude em ultravioleta. (Wyder et al. 2007, figura 7).

sequências azul e vermelha (figura 2.3). Esta distribuição bimodal é um resultado bem conhecido na astronomia.^[citation needed] Porém, diferente do diagrama cor-magnitude para a faixa espectral do óptico, a distribuição de cores em UV não pode ser ajustada somente pela soma de duas gaussianas, há um excesso de objetos nas cores intermediárias entre os picos azul e vermelho. A boa separação entre as sequências é atribuída a uma maior sensibilidade à formação estelar recente.

Martin et al. (2007) investigaram as propriedades das galáxias entre as sequências vermelha e azul para a mesma amostra citada acima. As galáxias nesta região intermediária são preferencialmente galáxias com núcleo ativo (*Active Galactic Nucleus*, AGN). Os autores estimam o fluxo de massa de galáxias indo da sequência azul para a vermelha.

Ainda para a mesma amostra, Schiminovich et al. (2007) investigaram a correlação entre a morfologia das galáxias e a sua posição no CMD. A função de luminosidade UV do universo local é medida – pela primeira vez, segundo os autores – com relação aos parâmetros estruturais e à inclinação das galáxias.

A missão do *GALEX* se encerra em 31 de dezembro de 2011. Dados coletados após o GR6, como as observações no mesmo campo utilizado na missão *Kepler*, observações de M31 e da Nuvem de Magalhães, entre outros, serão liberados num último *data release*, GR7. Os dados obtidos pelo *GALEX* permanecerão disponíveis publicamente no MAST.

2.4 Data releases e banco de dados

Os dados obtidos pelo *GALEX* são armazenados no *Multi-Mission archive at the Space Telescope Science Institute* (MAST). O acesso a estes dados é público, a liberação é feita anualmente em *General Releases* (GR). Os dados consistem basicamente em imagens e catálogos, divididos em campos (*tiles*) com área de aproximadamente 1,2 graus quadrados. Devido ao modo como o *GALEX* faz as observações, um determinado objeto pode estar presente em mais de um campo. A tabela 2.2 mostra o número cumulativo de campos observados por *survey* em cada GR⁴. Observações de pesquisadores convidados (*Guest Investigators*, GI) foram selecionadas de forma a complementar os *surveys*.

		1						
Release	AIS	DIS	MIS	NGS	GI	CAI	Espectros	Total
GR1	3 0 7 4	14	112	52	_	-	7	3 2 5 9
GR2/GR3	15 721	165	1017	296	288	20	41	17 548
GR4/GR5	28 269	292	2161	458	788	38	174	32 180
GR6	28 889	338	3 4 7 9	480	1 314	51	-	34 551

Tabela 2.2: Campos observados em cada General Release do GALEX.

Para facilitar o acesso aos dados do *GALEX*, o MAST desenvolveu uma ferramenta chamada *GalexView*, utilizando tecnologia *Adobe Flex*⁵. Desta forma o *GalexView* pode ser acessado através de seu *website*⁶ em qualquer *web browser* que tenha suporte ao *Adobe Flash Player*⁷.

⁴Informações retiradas do em website do GR6: http://galex.stsci.edu/GR6/

⁵Adobe Flex é um framework de código aberto que permite desenvolver aplicações para web browsers. Ver http://www.adobe.com/products/flex.html.

⁶GalexView: http://galex.stsci.edu/GalexView/

⁷Adobe Flash Player é uma extensão multiplataforma para *web browsers* que provê capacidade de visualização de conteúdo *flash* gerado tanto pelos seus editores proprietários quanto por ferramentas de terceiros. Ver

Figura 2.4: Tela do programa *GalexView*, com a visualização da galáxia M101.

Através do *GalexView* é possível fazer buscas, visualizar e obter imagens e catálogos dos campos do *GALEX*. As buscas podem ser feitas de forma bastante versátil, tanto pelo nome do objeto quanto pelas coordenadas do céu. O formato de entrada é flexível o suficiente para evitar os problemas causados por idiossincrasias na notação de coordenadas (por exemplo, tanto "14h03m12.6s +54d20m56.7s" quanto "14 03 12.6 54 20 56.7" ou "210.83 54.35" apontam para a mesma região). A sua interface (figura 2.4) permite filtrar o conteúdo retornado pelas buscas, separando por *surveys*. Há também uma ferramenta de histograma, permitindo filtrar pelos valores das colunas dos catálogos. Os objetos selecionados na busca aparecem marcados na visualização da imagem. Utilizando um sistema do tipo "carrinho de compras", pode-se selecionar campos e objetos de interesse, para ao final do uso do sistema baixar toda a seleção de uma vez.

Tanto o *GalexView* quanto outras ferramentas de busca do MAST, como o *GALEXSearch Form* e o *GALEXTilelist*, são construídos sobre um *banco de dados relacional* acessado através da linguagem *SQL* (Chamberlin & Boyce 1974). Muito comum na indústria, bancos de dados relacionais dispõem em geral de uma vasta gama de ferramentas para gerenciamento dos dados. Uma de suas grandes vantagens é o uso de índices⁸ para agilizar o acesso a dados. Embora a tecnologia exista desde a década de 1970 (Codd 1970), até uma década atrás suas

http://www.adobe.com/products/flashplayer/.

⁸Un índice numa tabela de banco de dados é uma estrutura que copia partes da tabela numa determinada ordem, de forma a aumentar a velocidade de acesso aos dados ao custo de espaço de armazenamento.

vantagens eram praticamente neglicenciadas na astronomia.

Bancos de dados relacionais e ferramentas para gerenciamento e acesso a dados serão tratados com mais detalhes no capítulo 3.

Capítulo 3

Estendendo a base de dados SDSS/STARLIGHT para o ultravioleta

3.1 Banco de dados do SDSS

Um dos maiores responsáveis pela promoção do uso de bancos de dados relacionais na astronomia é o projeto *Sloan Digital Sky Survey* (*SDSS*). Inicialmente o *SDSS* utilizou um *sistema de gerenciamento de banco de dados orientado a objetos* (OODBMS; Maier et al. 1986). Após pouco mais de um ano a abordagem se mostrou inadequada: entre os principais problemas, uma linguagem de *query* inadequada e performance ruim. O motivo, segundo Thakar et al. (2004), foi a incapacidade da empresa desenvolvedora do OODBMS em prover novas funcionalidades requisitadas pelo projeto e correção de *bugs*, bem como em acompanhar o crescimento da performance do *hardware*.

3.1.1 Migração de OODBMS para RDBMS

Todo o banco de dados do *SDSS* foi migrado para um *sistema de gerenciamento de banco de dados relacional* (RDBMS; Codd 1970) num esforço guiado por Thakar et al.. RDBMS pode ser considerado o padrão da indústria. Praticamente todas as linguagens de programação tem bibliotecas de interface às implementações de RDBMS comerciais mais comuns (Oracle, IBM e Microsoft, Postgres). Há uma diversidade de ferramentas para desenvolvimento e gerenciamento de RDBMS. E talvez o maior benefício de todos, o acesso aos dados é feito utilizando uma linguagem padronizada: *Simple Query Language*, ou simplesmente SQL (Chamberlin & Boyce 1974). A migração dos dados do *SDSS* para um RDBMS comercial implicou num aumento significativo da performance do acesso aos dados, e resultou no desenvolvimento do *SkyServer*¹. O servidor de banco de dados escolhido pelo *SDSS* foi o *Microsoft SQL Server*.

A comparação entre OODBMS e RDBMS no caso particular do *SDSS* não implica necessariamente a superioridade do segundo em relação ao primeiro. Tanto a abordagem orientada a objetos quanto a abordagem relacional tem suas vantagens e desvantagens. O estudo de caso do *SDSS* é apenas uma evidência anedótica em favor do uso de bancos de dados relacionais. No entanto, para aplicações semelhantes ao *SDSS– surveys* astronômicos com volumes imensos de dados – vale a pena apostar no sucesso dos RDBMS.

3.1.2 SkyServer

O *SkyServer* é um *website* (figura 3.1) que provê acesso aos dados armazenados no banco de dados do *SDSS* (Szalay et al. 2002). O acesso mais simples pode ser feito através de um atlas de locais famosos (*famous places*), que mostra imagens coloridas de objetos celestes conhecidos. Há formulários para buscas mais sérias, gerando coleções de imagens, espectros e tabelas de dados. No *SkyServer* é possível fazer buscas avançadas utlizando SQL, embora haja limites de tempo de execução e de quantidade de objetos retornados. Esta limitação é contornada através do sistema *CasJobs*, que é tratado na seção 3.1.3.

É importante ressaltar que é possível (de fato, a equipe do *SDSS* encoraja) criar *mirrors*² do *SkyServer*. Tanto o banco de dados do *SDSS* quanto o código fonte do *SkyServer* estão disponível no próprio *website* do *SkyServer*. Há um clone do banco de dados do *Data Release* 8 do *SDSS* no servidor *CasJobs* do STARLIGHT³.

3.1.3 CasJobs

O *Catalog Archive Server Jobs (CasJobs)* é um serviço online desenvolvido pela equipe do *SDSS* para expandir a capacidade do *SkyServer* (Li & Thakar 2008). Nele o usuário pode executar consultas SQL no banco de dados do *SDSS* da mesma forma que no *SkyServer*. Porém, além de consultas rápidas, é possível agendar a execução de consultas mais longas. O *CasJobs* gerencia estas consultas agendadas numa fila de execução, de modo a não sobrecarregar a rede

¹SDSS SkyServer: http://skyserver.sdss.org/

²*Mirror*: Espelho, em inglês. Clone de um *website*.

³CasJobs do starlight: http://casjobs.starlight.ufsc.br/casjobs/

Figura 3.1: Telas do *SkyServer*. À esquerda, formulário para submeter uma *query* SQL. À direita, ferramenta *Explore* mostrando a galáxia NGC 799.

ou os servidores de banco de dados. Cada usuário possui seu próprio banco de dados, chamado *MyDB*. Pode-se importar tabelas para o *MyDB* para utilizar em *queries* correlacionando com os dados presentes no *CasJobs*. O *MyDB* serve como armazenamento de tabelas do usuário, e há mecanismos para exportar estas tabelas para arquivos nos formatos FITS, CSV, XML e VOTable. Estes arquivos podem ser lidos por programas de análise de dados como o *TopCat*⁴, ou mesmo importados para outros bancos de dados.

É possível utilizar o *CasJobs* para acessar virtualmente qualquer banco de dados. No momento, o Grupo de Astrofísica da UFSC possui um servidor *CasJobs* com bancos de dados do starlight, *SDSS* DR8, GalaxyZoo^[citation needed], e uma amostra do *GALEX* e um catálogo de *redshifts* fotométricos (O'Mill et al. 2011). O *CasJobs* também foi adotado por outros projetos como o *GALEX*, *Kepler⁵* e o *Palomar Quest* ⁶ (Djorgovski et al. 2008).

A figura 3.2 mostra uma tela típica de uma sessão no CasJobs.

⁴*TopCat* é um visualizador gráfico interativo e editor de dados tabulares usado em astronomia. Ver http://www.star.bris.ac.uk/~mbt/topcat/.

⁵*Kepler CasJobs*: http://mastweb.stsci.edu/kplrcasjobs/

⁶Palomar Quest CasJobs: http://webvoy.cacr.caltech.edu/CasJobs/

3.1 Banco de dados do SDSS

Figura 3.2: Tela do *CasJobs*. Resultado da *query* buscando o *redshift*, a magnitude na banda g, a cor g - r e uma amostra da imagem de objetos com espectroscopia.

3.2 Banco de dados do STARLIGHT

O STARLIGHT é um código de síntese espectral (Cid Fernandes et al. 2005). O programa é executado uma vez para cada galáxia do *SDSS*, recebendo seu espectro como um arquivo texto. Ele usa uma biblioteca de espectros SSPs com diferentes idades e metalicidades como uma base do espaço de espectros galáticos possíveis. De forma simplificada, o que o STARLIGHT faz é encontrar as frações de massa e luz correspondente a cada elemento da base, ou seja, cada SSP. Analisando as relações entre os componentes determinandos pela síntese, o programa determina diversas propriedades físicas da galáxia, como a massa estelar total, a massa separada por idade, metalicidade média, quantidade de poeira e velocidade de rotação, para citar apenas algumas. Quase um milhão de espectros foram analisados, e o resultado da síntese foi armazenado em arquivos texto.

Somente os componentes estelares do espectro são obtidos desta forma. Subtraindo o espectro sintetizado de luz estelar é possível medir as linhas de emissão do espectro. Esta é uma etapa de pós-processamento, que gera um catálogo complementar de linhas de emissão.

3.2.1 Importação para o RDBMS

Os arquivos da síntese gerados pelo STARLIGHT ocupam uma dezena de gigabytes. Mesmo o catálogo de propriedades físicas das galáxias, sozinho, ocupa mais de um gigabyte. Embora seja um volume razoavelmente grande de dados, é possível trabalhar com esta quantidade de dados num computador atual⁷. A transferência de arquivos com tamanho da ordem de gigabytes pela internet também também é lugar-comum atualmente. Poderia-se argumentar que distribuir os dados neste formato seja a forma mais adequada.

Entretanto, deve-se admitir que uma das maiores razões para o sucesso do *CasJobs* em prover acesso aos dados o *SDSS* não é o tamanho da base de dados, e sim a facilidade com que o usuário pode acessar os dados e filtrar somente o que lhe for conveniente. Além disso, manter a base de dados num local central permite que sejam feitas correções e revisões, o que implicaria normalmente numa nova transferência caso cada usuário tivesse a sua cópia local.

O *CasJobs* requer um servidor rodando *Windows Server* com *Internet Information Services* (IIS) e *Microsoft SQL Server* (MSSQL). A instalação do *CasJobs* está documentada no *website* do *SkyServer* (ver secão 3.1.2). Com um servidor *CasJobs*, o trabalho consiste em importar os

⁷Na época da escrita desta dissertação, é bastante comum encontrar um computador novo com 4 gigabytes de memória RAM ou mais.

dados em arquivos texto para um banco de dados no MSSQL. A ferramenta principal para a manipulação dos bancos de dados no MSSQL é o *Microsoft SQL Server Management Studio*. Nele há um assistente para importação de dados baseado no *SQL Server Integrated Services* (SSIS). A importação das tabelas de propriedades físicas do starlight é trivial. Já a importação das linhas de emissão requer um trabalho extra para normalizar a tabela⁸.

3.2.2 Estrutura do banco de dados

O esquema do banco de dados do STARLIGHT pode ser visto na figura 3.3. A tabela observational_params contém os dados obtidos do *SDSS*. Estes dados, junto com os parâmtetros de entrada da síntese (tabela synthesis_params), foram usados como parâmetros para a obtenção das propriedades físicas das galáxias, armazzenadas na tabela synthesis_results. Estas tabelas estão ligadas através dos campos SpecObjID e SynID. As linhas de emissão estão armazenadas na tabela el_fit, ligada à synthesis_results através do campo SynID. A definição das linhas (comprimento de onda e faixas contínuo usadas na medida) está contida na tabela cfg_el_fit. As tabelas referentes ao *GALEX* são explicadas na seção 3.4.1.

3.2.3 Amostra do STARLIGHT

A amostra de galáxias do STARLIGHT contém 926246 espectros do *SDSS* DR7 (Abazajian et al. 2009). A identificação de cada espectro é feita através de um tripleto: a data juliana média da observação (MJD, *Mean Julian Date*), a identificação da placa de suporte das fibras ópticas (Plate) e a identificação da fibra utilizada para a obtenção do espectro (FiberID). Este tripleto (MJD, Plate, FiberID) identifica unicamente um espectro. Porém, é mais conveniente (e eficiente) ter um identificador único (uma chave primária⁹) para os registros num banco de dados. No caso do *SDSS*, a tabela de espectros (SpecObjAll) tem um identificador chamado SpecObjID.

Além de espectros, o banco de dados do *SDSS* contém fotometria de 1/4 do céu. Os objetos com dados de fotometria também tem um identificador único, ObjID. Existe uma coluna na tabela de espectros chamada BestObjID, que aponta para o registro de fotometria

⁸A normalização consiste em decompor uma tabela em tabelas menores (com menos campos) de forma que elas fiquem melhor estruturadas. No caso das linhas de emissão, a tabela passa de "todas as linhas de um dado objeto num único registro" para "uma linha para cada regsitro". No primeiro caso, adicionar um novo tipo de linha de emissão implicaria em mudar a estrutura da tabela, o que é evitado utilizando a segunda abordagem.

⁹Chave primária é um conjunto de um ou mais campos tais que a combinação de todos os campos da chave não se repete.

Figura 3.3: Esquema do banco de dados do STARLIGHT. As linhas indicam chaves estrangeiras, relacionando dois campos de duas tabelas diferentes.

(tabela PhotoObjAll) mais provável para cada espectro. É importante salientar que nem todo espectro tem um BestObjID definido.

A tabela de índices da amostra de galáxias do STARLIGHT contém inicialmente os tripletos [MJD, Plate, FiberID]. Esta tabela é importada para o ambiente CasJobs do *SDSS* DR7¹⁰. Através da execução da *query* da figura A.1 a tabela tem os valores de SpecObjID e BestObjID preenchida. Entre os objetos na amostra do STARLIGHT, 622 objetos não possuem um valor de BestObjID definido, ou seja, não foi possível encontrar a sua contrapartida fotométrica.

3.3 Identificação cruzada entre SDSS e GALEX

A identificação cruzada (*crossmatch*) de objetos em *surveys* diferentes é um problema razoavelmente complicado. A cobertura do céu de cada *survey* em geral não é a mesma. Por outro lado, os objetos presentes em um *survey* podem não ter sido detectados no outro. A probabilidade de duas fontes em catálogos diferentes corresponderem a um mesmo objeto pode ser calculada como função da separação entre elas e a precisão astrométrica das medidas (Budavári & Szalay 2008).

Budavári et al. (2009) aplicam este método probabilístico ao SDSS e ao GALEX. O crossmatch espacial é feito dentro de um RDMS (MSSQL, o mesmo usado no CasJobs), utilizando técnicas avançadas de indexação (Kunszt et al. 2000 Hierarchic Triangular Mesh). A tabela resultante é uma relação "muitos para muitos", onde a maioria dos objetos GALEX tem apenas um objeto SDSS associado, mas outras associações podem ocorrer. Um exemplo onde pode ocorrer uma associação "um para muitos" é o caso onde existe uma fonte fraca em UV (presente no SDSS mas não detectada pelo GALEX) próxima a uma fonte presente tanto no UV quanto no óptico. O algoritmo irá apontar estes dois objetos no SDSS como candidatos a serem a contrapartida óptica do objeto detectado no GALEX. O caso inverso implicaria numa associação "muitos para um". Nas tabelas 3.1 e 3.2 há a quantidade de identificações para cada tipo de associação, referentes aos surveys AIS e MIS, respectivamente. Os valores foram determinados para o crossmatch entre SDSS DR7 e GALEX GR6, disponível no CasJobs do GALEX¹¹). O artigo citado acima mostra a mesma tabela, com os resultados para dados do SDSS DR6 e GALEX GR3. A técnica utilizada por Budavári et al. agora faz parte do pipeline do GALEX. A distribuição do CasJobs inclui as ferramentas necessárias para fazer o crossmatch espacial entre bancos de dados.

¹⁰CasJobs SDSS DR7 - http://casjobs.sdss.org/CasJobs/

¹¹CasJobs GALEX: http://galex.stsci.edu/casjobs/

GALEX		SDSS	
	1	2	Muitos
1	15 267 818	9 150 919	4 623 197
2	4 524 337	2 504 786	1 162 463
Muitos	770 645	426 691	184 680

Tabela 3.1: Número de identificações entre *SDSS* DR7 e *survey* AIS do *GALEX* GR6, por associação. A lista foi gerada pela *query* mostrada na figura A.2.

Tabela 3.2: Número de identificações entre *SDSS* DR7 e *survey* MIS do *GALEX* GR6, por associação. A lista foi gerada pela *query* mostrada na figura A.2.

GALEX		SDSS	
	1	2	Muitos
1	8 201 735	5 923 551	3 775 187
2	2 120 174	1 580 701	984 067
Muitos	276 447	234016	150 894

3.4 Obtendo dados UV para a amostra STARLIGHT

3.4.1 Relação de crossmatch entre SDSS e GALEX

Como comentado na seção 3.3, no banco de dados do *GALEX* há uma tabela de *crossmatch* entre os objetos do *GALEX* e os seus correspondentes ópticos no catálogo do *SDSS*, chamada xSDSSDR7. A descrição completa dos campos pode ser vista na tabela 3.3. Dado que a identificação não é necessariamente unívoca, existem informações extras nesta tabela a fim de facilitar a seleção dos melhores candidatos: DistanceRank e MultipleMatchCount.

A identificação cruzada também é feita na direção oposta. Dado um objeto do *SDSS*, foram encontrados os objetos do *GALEX* candidatos. Para um par [ObjID, SDSSObjID], há também os campos ReverseDistanceRank e ReverseMultipleMatchCount.

Campo	Descrição
ObjID	Identificador único de objeto do GALEX.
SDSSObjID	Identificador único do SDSS.
Distance	Separação angular em segundos de arco.
DistanceRank	Um número inteiro, onde o valor 1 indica que o objeto do <i>GALEX</i> é o mais próximo do objeto <i>SDSS</i> , o valor 2 indica que ele é o segundo mais próximo, etc.
ReverseDistanceRank	Um número inteiro, onde o valor 1 indica que o objeto do <i>SDSS</i> é o mais próximo do objeto <i>GALEX</i> , o valor 2 indica que ele é o segundo mais próximo, etc.
MultipleMatchCount	Um número inteiro indicando quantos objetos <i>SDSS</i> foram encontrados para o objeto <i>GALEX</i> dentro do raio de busca.
ReverseMultipleMatchCount	Um número inteiro indicando quantos objetos <i>GALEX</i> foram encontrados para o objeto <i>SDSS</i> dentro do raio de busca.

Tabela 3.3: Descrição dos campos da tabela xSDSSDR7.

3.4.2 Dados UV

A amostra do starlight descrita na seção 3.2.3 contém o identificador do catálogo de fotometria do *SDSS*. Este identificador é o mesmo utilizado na tabela XSDSSDR7. A *query* da figura A.3 preenche a tabela chamada galex_ais com todos os objetos da amostra do star-LIGHT, junto com suas respectivas magnitudes NUV (FUV_mag) e FUV (NUV_mag), o erro na medida das magnitudes (FUV_magErr e NUV_magErr), o tempo de exposição em cada filtro (fexptime e nexptime), o excesso de cor E(B-V) (e_bv, ver seção 3.4.3) e a distância entre a detecção do objeto no *GALEX* e no *SDSS* (distance). Esta tabela é esparsamente populada, com um registro para cada objeto do starlight, e os dados UV preenchidos somente para os objetos com identificação positiva. Caso o objeto não tenha um correspodente *GALEX*, os valores serão nulos¹². De forma similar, os dados UV para o *survey* MIS foram armazenados na tabela galex_mis. Estas tabelas podem ser vistas no contexto do banco de dados do starlight na seção 3.2.2.

¹²Numa tabela, quando um campo de um registro não possui valor definido, seu valor é dito "nulo". Em SQL, a palavra-chave que representa um valor nulo é "*null*".

Foram escolhidas somente identificações cruzadas do tipo um-para-um, ou seja, registros com multipleMatchCount e reverseMultipleMatchCount iguais a 1. Em situações diferentes desta, caso houvesse mais de um candidato para uma mesma detecção, seria necessária uma análise mais detalhada. Desta forma, optou-se por uma confiabilidade maior nos dados utilizando apenas identificações unívocas, em troca de uma amostra menor.

Outro artefato importante é que somente um objeto *GALEX* foi escolhido para cada objeto do catálogo do starlight, indepente do *survey* utilizado. Se existe um correspondente AIS e outro MIS para o mesmo objeto da amostra, apenas o mais próximo é considerado. Nos campos onde os dois surveys se sobrepõem, há uma maior quantidade de objetos no MIS do que no AIS, devido ao maior tempo de exposição no MIS. Assim, nesses campos, os objetos do MIS têm maior chance de estar mais próximos ao objeto do *SDSS*. Isto também não é um problema muito grave para o AIS, já que a sua cobertura do céu é muito maior do que a do MIS. A fração exata de objetos perdidos em cada caso ainda precisa ser determinada. Esta correção será feita futuramente numa revisão do catálogo.

No total foram obtidas 173 218 detecções no AIS e 41 274 no MIS. Nem todos os objetos tiveram detecção simultânea nas bandas FUV e NUV. A tabela 3.4 lista a quantidade de objetos que possuem valor definido de acordo com cada banda UV. Alguns objetos podem ser muito fracos em FUV. Isto combinado com a baixa eficiência do filtro (figura 2.1) e do detetor podem fazer com que a contagem de fótons deste objeto seja muito baixa, ficando abaixo do nível limite de sinal-ruído do *survey*.

Tabela 3.4: Número de detecções por banda no catálogo UV do STARLIGHT. Nas linhas FUV e NUV, é listada a quantidade de objetos com detecção para os *surveys* AIS e MIS nas bandas FUV e NUV, respectivamente. A linha FUV+NUV lista a quantidade de objetos com detecção simultânea em FUV e NUV. A figura A.4 contém a *query* que gera esta lista.

Banda	AIS	MIS
FUV	107 902	13 685
NUV	168 126	38 828
FUV+NUV	102 811	11 239

3.4.3 Correções aplicadas à fotometria UV

O catálogo do *GALEX* fornece a fotometria NUV e FUV dos objetos em magnitude aparente, sem qualquer correção a não ser por fatores instrumentais. Para que as galáxias possam ser analisadas de forma adequada, algumas correções precisam ser feitas.

A luz proveniente de outras galáxias sofre extinção causada por poeira dentro da nossa própria Galáxia¹³. Esta extinção depende da direção de onde vem a luz, e a sua influência depende do comprimento de onda. O efeito final, em geral, é o avermelhamento do espectro. O excesso de cor E(B - V) representa quantitativamente este avermelhamento.

O catálogo do *GALEX* provê os valores de excesso de cor E(B - V) das galáxias com base nos mapas de extinção interestelar de Schlegel et al. (1998). A correção é feita usando o modelo de extinção CCM (Cardelli et al. 1989, equações 4a e 4b). Para um comprimento de onda λ qualquer, a extinção absoluta (em magnitudes) é dada por

$$A_{\lambda} = R_{V} E(B - V) a(x) + E(B - V) b(x),$$

$$x = \frac{10000 \text{\AA}}{\lambda}.$$

No caso das bandas FUV ($\lambda_{eff} = 1528\text{\AA}$) e NUV ($\lambda_{eff} = 1528\text{\AA}$),

$$x_{FUV} = 6,54$$
$$x_{NUV} = 4,40$$

com os coeficientes a(x) e b(x) dados por

$$a(x) = 1,752 - 0,326x - 0,104/[(x - 4,67)^2 + 0,341] + F_a(x)$$

$$b(x) = -3,090 + 1,825x + 1,206/[(x - 4,62)^2 + 0,263] + F_b(x)$$

$$F_a(x_{FUV}) = F_b(x_{FUV}) = 0$$

$$F_a(x_{NUV}) = -0.04473(x_{NUV} - 5.9)^2 - 0.09779(x_{NUV} - 5.9)^3$$

$$F_b(x_{NUV}) = 0.2130(x_{NUV} - 5.9)^2 + 0.1207(x_{NUV} - 5.9)^3.$$

Usando $R_V = 3,1$, a extinção nas bandas FUV e NUV em função do excesso de cor E(B - V)

¹³A existência de poeira na Via Láctea pode ser notada facilmente a olho nu em uma noite sem lua – e bem longe da luz da cidade!

é dada por

$$A_{FUV} = 8,15 E(B - V)$$

 $A_{NUV} = 9,17 E(B - V)$

Esta correção é então aplicada às magnitudes do catálogo.

Foi aplicada também a correção k(z) devida ao *redshift*, e a magnitude foi transformada em magnitude absoluta, utilizando o código KCORRECT (v4_2) de Blanton & Roweis (2007).

3.5 Definição da amostra STARLIGHT+UV

A *query* mostrada na figura A.5 monta a amostra a ser utilizada no capítulo seguinte. As colunas selecionadas são as magnitudes *ugriz* do *SDSS*, a magnitude *NUV* do *GALEX* e algumas propriedades físicas das galáxias (tabela 3.5). Foram selecionadas também a largura equivalente e o fluxo das linhas de emissão H α , H β , [O III] λ 5007 e [N II] λ 6584.

Coluna	Descrição
mcor_gal	Logaritmo da massa estelar
at_flux	Logaritmo da idade média ponderada em fluxo
at_mass	Logaritmo da idade média ponderada em massa
am_flux	Metalicidade média ponderada em fluxo
am_mass	Metalicidade média ponderada em massa
AV	Extinção causada por poeira (magnitude)

Tabela 3.5: Propriedades físicas das galáxias, obtidos do starlight.

É preciso fazer algumas considerações com respeito ao *redshifts* das galáxias que pertencem à amostra. O *redshift* deve ser superior a 0,04 para evitar efeitos de abertura da fibra¹⁴. Em *redshifts* superiores a 0,17 a linha [N II] λ 6584 fica deslocada para além do limite vermelho dos espectros do *SDSS*, escapando da detecção. Assim, as galáxias da amostra devem ter 0,04 < z < 0,17. Este foi o mesmo critério usado por Cid Fernandes et al. (2011).

¹⁴Os espectros obtidos pelo *SDSS* foram feitos através de fibras ópticas. Cada fibra coleta a luz de uma região de 3 segundos de arco de diâmetro. Em *redshifts* próximos, uma fração considerável da luz das galáxias (em geral das partes externas) cai fora da fibra. Nestes casos, o espectro obtido não é o espectro integrado da galáxia, mas sim o espectro das regiões centrais.

Figura 3.4: Diagrama de *redshift* contra magnitude absoluta *r*. As galáxias selecionadas ficam abaixo do corte em r = 22,0, formando uma amostra limitada em volume.

FIXME: Daqui pra frente tá tudo errado.

A figura 3.4 mostra a distribuição da magnitude absoluta r das galáxias em função do *redshift*. Fazendo um corte em r = -22,0 e rejeitando todas as galáxias mais fracas, temse uma amostra completa limitada em volume. Para esta amostra, as propriedades físicas e observacionais das galáxias estão distribuídas conforme os histogramas da figura 3.5.

Resumindo, a amostra starLIGHT+UV contém os objetos do AIS com fotometria NUV definida, limitada em volume com *redshift* entre 0,04 e 0.17, e magnitude absoluta r mais brilhante que -22,0. No total a amostra contém *NNN NNN* objetos^[FIXME].

Figura 3.5: Histogramas das medidas da amostra starlight +UV.

Capítulo 4

Análise da amostra STARLIGHT+UV

4.1 Diagrama cor–cor

De posse de uma amostra de galáxias com uma informação adicional (as magnitudes em ultravioleta), é natural tentar ver como estas novas medidas se relacionam às medidas conhecidas. Chilingarian & Zolotukhin (2011) mostram que, num gráfico tridimensional das cores $NUV - r \in g - r$ contra a magnitude z, a distribuição de galáxias pode ser aproximada por uma superfície polinomial de baixa ordem. Os autores mostram que há uma forte correlação entre a cor NUV - r e a morfologia da galáxia. Eles também estudam o histórico de formação estelar (SFH) no diagrama NUV - r contra g - r, mas a exploração é um tanto superficial.

A figura 4.2 mostra as propriedades físicas das galáxias obtidos através do starlight no diagrama cor–cor. Essencialmente, os gráficos são os mesmos que o da figura 4.1, com a cor dos pontos indicando o valor de cada parâmetro. Em especial, o painel (a) mostra a relação entre a idade média (ponderada em fluxo das SSP) e a cor das galáxias. Chilingarian & Zolotukhin chegam numa relação semelhante, porém por outros meios.

Figura 4.1: Densidade de galáxias em função de cor UV (NUV - r) e cor óptica (g - r). A intensidade dos bins hexagonais é o logaritmo do número de pontos dentro do bin, para melhorar a visualização. Esta figura é similar à figura 4 de Chilingarian & Zolotukhin (2011). Foram selecionados objetos da amostra do STAR-LIGHT com magnitude na banda z entre -23 e -21,5 e *redshift* entre 0,04 e 0,17. As magnitudes g, r e z são do SDSS.

Figura 4.2: Propriedades físicas das galáxias em função de cor UV e cor óptica. O contorno das figuras representam os níveis referentes à figura 4.1, e os eixos horizontal e vertical são os mesmos. As cores dos pontos nos painéis correspondem a: (a) Logaritmo da idade média da galáxia, ponderada pelo fluxo das SSP componentes.
(b) O mesmo que a anterior, mas ponderada pela massa das SSP. (c) Metalicidade média da galáxia ponderada pelo fluxo das SSP. (c) Metalicidade média da galáxia ponderada pelo fluxo das SSP. (d) O mesmo que a anterior, ponderada pelo fluxo das SSP. (e) Logaritmo da massa estelar da galáxia, em massas solares. (f) Extinção por poeira na galáxia, na banda V.

4.2 Classificação das galáxias

Nesta seção são discutidas formas de classificação de galáxias, e a forma como a cor UV das galáxias está relacionada às classes. São utilizadas as linhas de emissão H α , H β , [N II] λ 6584 e [O III] λ 5007 (daqui em diante chamados apenas de [N II] e [O III]).

A classificação feita a seguir divide as galáxias em dois grupos principais: as galáxias com linha de emissão (ELG) e as galáxias passivas (PG). As ELG ainda podem ser divididas dependendo do processo físico pro trás das linhas de emissão. Cid Fernandes et al. (2011) elabora um procedimento simples num diagrama relacionando a largura equivalente da linha H α ($W_{H\alpha}$) com a razão entre o fluxo de linhas [N II]/H α , chamado diagrama WHAN. Este diagrama relaciona duas quantidades físicas diferentes: $W_{H\alpha}$ mede a quantidade de fótons ionizantes absorvida pelo gás em relação à massa estelar, e [N II]/H α mede a abundância de nitrogênio, o estado de ionização e a temperatura do gás. Assim, as galáxias são separadas em classes neste diagrama conforme os seguintes critérios:

- (a) Galáxias com formação estelar (SFG): $\log([N \text{ II}]/\text{H}\alpha) < -0.4 \text{ e } W_{\text{H}\alpha} > 3\text{\AA}$,
- (**b**) Galáxias com núcleo ativo forte (sAGN): $\log([N \text{ II}]/\text{H}\alpha) > -0.4 \text{ e } W_{\text{H}\alpha} > 6\text{\AA}$,
- (c) Galáxias com núcleo ativo fraco (wAGN): $\log([N II]/H\alpha) > -0.4 \text{ e } 3\text{\AA} > W_{H\alpha} > 6\text{\AA}$,
- (**d**) Galáxias "aposentadas" (RG): $W_{H\alpha} < 3\text{\AA}$,
- (e) Galáxias passivas (PG): $W_{\text{H}\alpha} < 0.5\text{\AA} \text{ e } W_{\text{[NII]}} < 0.5\text{\AA}$.

O diagrama WHAN para a amostra starlight+UV pode ser visto na figura 4.3. A cor dos pontos para cada classe é o mesmo utilizado por Cid Fernandes et al. (2011). São 59 180 galáxias com formação estelar, 39 053 galáxias com núcleo ativo forte, 14 647 galáxias com núcleo ativo fraco, 29 119 galáxias aposentadas e 19 939 galáxias passivas. O mesmo diagrama, agora com a cor dos pontos representando a cor NUV - r das galáxias (figura 4.4), mostra que a cor das galáxias está relacionada à sua classe.

Outra forma de classificar as galáxias é através das razões entre linhas de emissão [N II]/H α e [O III]/H β . Este diagrama de diagnóstico é conhecido como BPT. Em Cid Fernandes et al. (2010) discute-se os detalhes desta forma de classificação utilizando o diagrama BPT. As linhas tracejadas separam as galáxias nas classes *Seyfert* (correspondendo às sAGN no diagrama WHAN), *LINER* (wAGN e aposentadas no WHAN) e galáxias de formação estelar (SFG). A cor UV das galáxias da amostra no diagrama BPT (figura 4.5) é consistente com as cores para o diagrama WHAN.

Figura 4.3: Diagrama de diagnóstico WHAN. As linhas tracejadas separam as galáxias em classes. **Azul**: galáxias com formação estelar (SFG). **Verde claro**: galáxias com núcleo ativo forte (sAGN). **Verde forte**: galáxias com núcleo ativo fraco (wAGN). **Preto**: galáxias aposentadas (RG). **Vermelho**: galáxias passivas (PG). **Magenta**: Galáxias que não se encaixam em nenhuma destas classes.

Figura 4.4: Diagrama WHAN semelhante ao da figura 4.3. A cor dos pontos representa NUV-r. Pode-se notar que a cor típica dos pontos muda para cada classe.^[FIXME]

Figura 4.5: Diagrama BPT, também usado para classificar galáxias. A cor dos pontos representa NUV - r. As linhas tracejadas separam das galáxias nas classes *Seyfert*, *LINER* e formação estelar, conforme Cid Fernandes et al. (2010, linhas S06 e K06 da tabela 1).

As classes de galáxias ocupam regiões distintas do diagrama cor–cor. Na figura 4.6 a cor dos pontos representa a classe das galáxias da mesma forma que na figura 4.3. Embora não esteja muito claro para as RG e PG, as classes formam uma sequência no diagrama cor–cor. Isto pode ser visto mais facilmente na figura 4.7. Esta figura é de certo modo uma versão resumida da figura 4.6. Mesmo havendo uma sobreposição considerável ente as classes, a sequência está bem definida.

Figura 4.6: Classes de galáxias no diagrama cor–cor UV. As cores referentes às classes de galáxia são as mesmas do diagrama WHAN (figura 4.3). É possível notar uma separação entre as classes, embora não tão clara quanto no diagrama WHAN.

Figura 4.7: Histogramas normalizado das cores óptica (g-r) e ultravioleta (NUV-r) para as classes de galáxias. A cor das linhas representa a classe conforme a figura 4.3. Em ultravioleta a separação entre as classes de galáxias aposentadas (RG) e passivas (PG) torna-se mais clara. Note que os histogramas seguem o agrupamento das classes na figura 4.6.

4.3 Propriedades físicas no diagrama cor-cor

TODO: Parâmetros físicos das galáxias no diagrama de cores. A sequência de classes no diagrama cor–cor. Figura 4.8.

A classificaão das galáxias na seção anterior... As propriedades físicas das galáxias estão relacionadas à sua classe...

Não é idade das galáxias, mas idade da SSP que domina o fluxo/massa. O mesmo para a metalicidade.

AV pode ser negativo?

Logaritmo da idade média [a] das SSP ponderada em fluxo

Figura 4.8: Idade média das SSP componentes das galáxias ponderada pelo fluxo, em função de NUV - r e g - r. O painel (**a**) contém todas as galáxias da amostra. Os painéis de (**b**) a (**f**) contém somente as galáxias com formação estelar (SFG), AGN fortes (sAGN), AGN fracas (wAGN), galáxias aposentadas (RG) e galáxias passivas (PG), respectivamente. Os contornos indicam a densidade de galáxias. A idade média da distribuição vai aumentando conforme a classe, na sequência apresentada.

Logaritmo da idade média [a] das SSP ponderada em massa

Figura 4.9: O mesmo que a figura 4.8, para a idade média das SSP componentes das galáxias, ponderada pela massa. Note que a escala de idades não é a mesma.

Metalicidade média das SSP ponderada em fluxo [Z_{\odot}]

Figura 4.10: O mesmo que a figura 4.8, para a metalicidade média das SSP componentes das galáxias, ponderada pelo fluxo.

Metalicidade média das SSP ponderada em massa [Z_{\odot}]

Figura 4.11: O mesmo que a figura 4.8, para a metalicidade média das SSP componentes das galáxias, ponderada pelo massa.

Logaritmo da massa estelar [M_{\odot}]

Figura 4.12: O mesmo que a figura 4.8, para o logaritmo da massa estelar das galáxias em massas solares.

Extinção por poeira (magnitude)

Figura 4.13: O mesmo que a figura 4.8, para a extinção por poeira na banda *V* das galáxias.

Logaritmo da largura equivalente de H_{α} [Å]

Figura 4.14: O mesmo que a figura 4.8, para o logaritmo da largura equivalente de $H\alpha$ das galáxias.

4.4 Discussão

4.4.1 A separação entre galáxias aposentadas e passivas

TODO: Comparar galáxias aposentadas com passivas.

\citep[In prep. perpetuum]{Mateus2013}

Capítulo 5

Conclusões e perspectivas

- 5.1 Este trabalho
- 5.2 Trabalhos futuros

Apêndice A

Queries SQL

Queries SQL utilizadas no texto. As palavras-chave da linguagem estão em negrito e maiúsculas. Os servidores *CasJobs* referenciados na legenda das figuras estão listados abaixo.

starLight: http://casjobs.starlight.ufsc.br/casjobs/ SDSS: http://casjobs.sdss.org/CasJobs/ GALEX: http://galex.stsci.edu/casjobs/

```
UPDATE sample
    SET SpecObjID=so.SpecObjID, ObjID=so.BestObjID
FROM sample s2 INNER JOIN DR7..SpecObjAll so
    ON so.MJD=s2.MJD
    AND so.Plate=s2.Plate
    AND so.FiberID=s2.FiberID
```

Figura A.1: Atualização dos índices da amostra de galáxias do starlight. A *query* foi executada no *CasJobs* do *SDSS* para obter SpecObjID e BestObjID dado o tripleto [MJD, Plate, FiberID].

```
SELECT
        'AIS' AS survey, '1' AS mg, '1' AS ms, COUNT(*) AS N
FROM xsdssdr7 x
INNER JOIN photoobjall p ON x.objid = p.objid
INNER JOIN photoextract pe ON p.photoextractid = pe.photoextractid
WHERE x.multipleMatchCount = 1 AND x.reverseMultipleMatchCount = 1
        AND pe.mpstype='AIS'
UNION SELECT
        'AIS' AS survey, '1' AS mg, '2' AS ms, COUNT(*) AS N
FROM xsdssdr7 x
INNER JOIN photoobjall p ON x.objid = p.objid
INNER JOIN photoextract pe ON p.photoextractid = pe.photoextractid
WHERE x.multipleMatchCount = 1 AND x.reverseMultipleMatchCount = 2
        AND pe.mpstype='AIS'
UNION SELECT
        'AIS' AS survey, 1 AS mg, '+' AS ms, COUNT(*) AS N
FROM xsdssdr7 x
INNER JOIN photoobjall p ON x.objid = p.objid
INNER JOIN photoextract pe ON p.photoextractid = pe.photoextractid
WHERE x.multipleMatchCount = 1 AND x.reverseMultipleMatchCount > 2
        AND pe.mpstype='AIS'
UNION SELECT
. . .
```

Figura A.2: Lista das identificações mútuas entre *SDSS* DR7 e os *surveys* do *GALEX*. São contados quantos objetos de um dado *survey* tem identificação direta e reversa com apenas 1, 2 ou mais de objetos. Os campos mg e ms representam respectivamente o número de candidatos para o *GALEX* e para o *SDSS*. Ver seção 3.4.1 para mais detalhes sobre a identificação cruzada. Apenas uma parte da *query* foi incluída, o restante é similar ao código presente. *Query* executada no *CasJobs* do *GALEX*.

```
SELECT INTO mydb..galex_ais
        s.objid AS sdssobjid, x.objid AS galexobjid,
        s.mjd, s.plate, s.fiberid,
        g.fuv_mag, fuv_magErr,
        g.nuv_mag, g.nuv_magErr,
        g.e_bv,
        g.band,
        x.distance,
        pe.fexptime,
        pe.nexptime
FROM mydb..sample s
LEFT JOIN xSDSSDR7 x
        ON s.objid = x.sdssobjid
        AND x.distanceRank=1
        AND x.reverseDistanceRank=1
        AND x.multipleMatchCount=1
        AND x.reverseMultipleMatchCount=1
LEFT JOIN photoobjall g
        ON g.objid = x.objid
LEFT JOIN photoextract e
        ON e.photoextractid=g.photoextractid
WHERE e.mpstype='AIS'
```

Figura A.3: *Query* para o *match* entre os objetos da amostra do STARLIGHT e *GALEX* AIS. A mesma *query* foi usada para o MIS, trocando apenas o nome da tabela para galex_mis e modificando a última linha para e.mpstype='MIS'. *Query* executada no *CasJobs* do *GALEX*.

```
SELECT
        'AIS' AS survey, 'FUV' AS band, COUNT(*) AS N
FROM galex_ais
WHERE galexobjid <> 0
        AND fuv_mag <> -999
UNION SELECT
        'AIS' AS survey, 'NUV' AS band, COUNT(*) AS N
FROM galex_ais
WHERE galexobjid <> 0
        AND nuv_mag <> -999
UNION SELECT
        'AIS' AS survey, 'FUV+NUV' AS band, COUNT(*) AS N
FROM galex_ais
WHERE galexobjid <> 0
        AND fuv_mag <> -999
        AND nuv_mag <> -999
UNION SELECT
        'MIS' AS survey, 'FUV' AS band, COUNT(*) AS N
FROM galex_mis
WHERE galexobjid <> 0
        AND fuv_mag <> -999
UNION SELECT
        'MIS' AS survey, 'NUV' AS band, COUNT(*) AS N
FROM galex_mis
WHERE galexobjid <> 0
        AND uv_mag <> -999
UNION SELECT
        'MIS' AS survey, 'FUV+NUV' AS band, COUNT(*) AS N
FROM galex_mis
WHERE galexobjid <> 0
        AND fuv_mag <> -999
        AND nuv_mag <> -999
```

Figura A.4: Lista contendo quantidade de objetos no catálogo STARLIGHT +UV com deteções *GALEX* nas bandas FUV, NUV e em ambas. Valores de –999 indicam que o a coluna está indefinida. Valores de galexObjID iguais a zero indicam que o objeto STARLIGHT não tem correspondente *GALEX*. *Query* executada no *CasJobs* do STARLIGHT.

```
SELECT INTO MyDB..galex_ais_elines_z
        s.specobjid,
        g.nuv_mag AS NUV,
        o.Mu AS u, o.Mg AS g, o.Mr AS r,
        o.Mi AS i, o.Mz AS z,
        s.mcor_gal, s.at_flux, s.at_mass, s.am_flux,
        s.am_mass, s.AV,
        e.oiii_5007_flux, e.oiii_5007_flux_err,
        e.oiii_5007_ew, e.oiii_5007_ew_err, e.oiii_5007_sn,
        e.nii_6584_flux, e.nii_6584_flux_err,
        e.nii_6584_ew, e.nii_6584_ew_err, e.nii_6584_sn,
        e.halpha_flux, e.halpha_flux_err,
        e.halpha_ew, e.halpha_ew_err, e.halpha_sn,
        e.hbeta_flux, e.hbeta_flux_err,
        e.hbeta_ew, e.hbeta_ew_err, e.hbeta_sn,
        o.z AS redshift
FROM galex_ais g
INNER JOIN synthesis_results sON
        s.specobjid = g.specobjid
INNER JOIN el_fit_all e ON
        s.synid = e.synid
INNER JOIN obs_parameters o ON
        o.specobjid = s.specobjid
WHERE
        g.galexobjid <> 0
        AND g.nuv_mag <> -999
        AND o.z > 0.04
        AND o.z < 0.17
```

Figura A.5: TODO: Extração da amostra de galáxias. Explicar limites em z e nuv <> -999. *Query* executada no *CasJobs* do STARLIGHT.

Referências Bibliográficas

- Abazajian, K. N., Adelman-McCarthy, J. K., Agüeros, M. A., Allam, S. S., Allende Prieto, C., An, D., Anderson, K. S. J., Anderson, S. F. et al. 2009, ApJS, 182, 543
- Apte, C., ed. 2011, KDD '11: Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining (New York, NY, USA: ACM), 618112
- Benítez, N., Gaztañaga, E., Miquel, R., Castander, F., Moles, M., Crocce, M., Fernández-Soto, A., Fosalba, P. et al. 2009, ApJ, 691, 241
- Blanton, M. R. & Roweis, S. 2007, AJ, 133, 734
- Boksenberg, A., Evans, R. G., Fowler, R. G., Gardner, I. S. K., Houziaux, L., Humphries, C. M., Jamar, C., Macau, D. et al. 1973, MNRAS, 163, 291
- Born, A. J. 2010, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7738, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series
- Borucki, W. J., Koch, D., Basri, G., Batalha, N., Brown, T., Caldwell, D., Caldwell, J., Christensen-Dalsgaard, J. et al. 2010, Science, 327, 977
- Bowyer, S., Sasseen, T. P., Lampton, M., & Wu, X. 1993, ApJ, 415, 875
- Budavári, T., Heinis, S., Szalay, A. S., Nieto-Santisteban, M., Gupchup, J., Shiao, B., Smith, M., Chang, R. et al. 2009, ApJ, 694, 1281

Budavári, T. & Szalay, A. S. 2008, ApJ, 679, 301

Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, 345, 245

Carruthers, G. R. 1973, Appl. Opt., 12, 2501

Chamberlin, D. D. & Boyce, R. F. 1974, in Proceedings of the 1974 ACM SIGFIDET (now SIGMOD) workshop on Data description, access and control, SIGFIDET '74 (New York, NY, USA: ACM), 249–264

Chilingarian, I. & Zolotukhin, I. 2011, ArXiv e-prints

- Cid Fernandes, R. 2006, Boletin de la Asociacion Argentina de Astronomia La Plata Argentina, 49, 228
- Cid Fernandes, R., Mateus, A., Sodré, L., Stasińska, G., & Gomes, J. M. 2005, MNRAS, 358, 363
- Cid Fernandes, R., Stasińska, G., Mateus, A., & Vale Asari, N. 2011, MNRAS, 413, 1687
- Cid Fernandes, R., Stasińska, G., Vale Asari, N., Mateus, A., Schlickmann, M. S., Schoenell, W., & Schoenell. 2010, in IAU Symposium, Vol. 267, IAU Symposium, 65–72
- Codd, E. F. 1970, Commun. ACM, 13, 377
- Code, A. D., Houck, T. E., McNall, J. F., Bless, R. C., & Lillie, C. F. 1970, ApJ, 161, 377
- Colless, M. 1999, in Large-Scale Structure in the Universe, ed. G. Efstathiou & et al., 105
- da Costa, L. N., Pellegrini, P. S., Sargent, W. L. W., Tonry, J., Davis, M., Meiksin, A., Latham, D. W., Menzies, J. W. et al. 1988, ApJ, 327, 544
- Djorgovski, S. G., Baltay, C., Mahabal, A. A., Drake, A. J., Williams, R., Rabinowitz, D., Graham, M. J., Donalek, C. et al. 2008, Astronomische Nachrichten, 329, 263
- Henize, K. G., Wray, J. D., Parsons, S. B., Benedict, G. F., Bruhweiler, F. C., Rybski, P. M., & Ocallaghan, F. G. 1975, ApJ, 199, L119
- Huchra, J., Davis, M., Latham, D., & Tonry, J. 1983, ApJS, 52, 89
- Huchra, J. P. 1988, in Astronomical Society of the Pacific Conference Series, Vol. 5, The Minnesota lectures on Clusters of Galaxies and Large-Scale Structure, ed. J. M. Dickey, 41–70
- Ivezic, Z., Tyson, J. A., Acosta, E., Allsman, R., Anderson, S. F., Andrew, J., Angel, R., Axelrod, T. et al. 2008, ArXiv e-prints
- Kondo, Y. & Wamsteker, W. 1987, Exploring the universe with the IUE satellite, Astrophysics and space science library (D. Reidel)
- Kunszt, P. Z., Szalay, A. S., Csabai, I., & Thakar, A. R. 2000, in Astronomical Society of the Pacific Conference Series, Vol. 216, Astronomical Data Analysis Software and Systems IX, ed. N. Manset, C. Veillet, & D. Crabtree, 141–+
- Li, N. & Thakar, A. R. 2008, Computing in Science Engineering, 10, 18
- Maier, D., Stein, J., Otis, A., & Purdy, A. 1986, SIGPLAN Not., 21, 472
- Martin, D. C., Fanson, J., Schiminovich, D., Morrissey, P., Friedman, P. G., Barlow, T. A., Conrow, T., Grange, R. et al. 2005, ApJ, 619, L1
- Martin, D. C., Wyder, T. K., Schiminovich, D., Barlow, T. A., Forster, K., Friedman, P. G., Morrissey, P., Neff, S. G. et al. 2007, ApJS, 173, 342

- Morrissey, P., Conrow, T., Barlow, T. A., Small, T., Seibert, M., Wyder, T. K., Budavári, T., Arnouts, S. et al. 2007, ApJS, 173, 682
- Morrissey, P., Schiminovich, D., Barlow, T. A., Martin, D. C., Blakkolb, B., Conrow, T., Cooke, B., Erickson, K. et al. 2005, ApJ, 619, L7
- Norris, R. P. 2010, ArXiv e-prints
- O'Mill, A. L., Duplancic, F., García Lambas, D., & Sodré, Jr., L. 2011, MNRAS, 413, 1395
- Schiminovich, D., Wyder, T. K., Martin, D. C., Johnson, B. D., Salim, S., Seibert, M., Treyer, M. A., Budavári, T. et al. 2007, ApJS, 173, 315
- Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525
- Skrutskie, M. F., Cutri, R. M., Stiening, R., Weinberg, M. D., Schneider, S., Carpenter, J. M., Beichman, C., Capps, R. et al. 2006, AJ, 131, 1163
- Spanos, A. 2000, Journal of Economic Methodology, 7, 231
- Stecher, T. P., Cornett, R. H., Greason, M. R., Landsman, W. B., Hill, J. K., Hill, R. S., Bohlin, R. C., Chen, P. C. et al. 1997, PASP, 109, 584
- Szalay, A. S., Gray, J., Thakar, A. R., Kunszt, P. Z., Malik, T., Raddick, J., Stoughton, C., & vandenBerg, J. 2002, in Proceedings of the 2002 ACM SIGMOD international conference on Management of data, SIGMOD '02 (New York, NY, USA: ACM), 570–581
- Thakar, A. R., Szalay, A. S., Kunszt, P. Z., & Gray, J. 2004, eprint arXiv:cs/0403020
- van Duinen, R. J., Aalders, J. W. G., Wesselius, P. R., Wildeman, K. J., Wu, C. C., Luinge, W., & Snel, D. 1975, A&A, 39, 159
- Wright, E. L., Eisenhardt, P. R. M., Mainzer, A. K., Ressler, M. E., Cutri, R. M., Jarrett, T., Kirkpatrick, J. D., Padgett, D. et al. 2010, AJ, 140, 1868
- Wyder, T. K., Martin, D. C., Schiminovich, D., Seibert, M., Budavári, T., Treyer, M. A., Barlow, T. A., Forster, K. et al. 2007, ApJS, 173, 293
- York, D. G., Adelman, J., Anderson, Jr., J. E., Anderson, S. F., Annis, J., Bahcall, N. A., Bakken, J. A., Barkhouser, R. et al. 2000, AJ, 120, 1579