
Spectral analysis of galaxies
Cid - PGFSC-UFSC - 2012/2

Last updated: March 27, 2013

A living set of notes of a graduate course in the making. . . A
little-theory-but-many-hands-on-exercises course.

Preamble: These notes grew out of the need to give my students a hands-on experience similar to the
one I (and older folks like me) had to develop by myself before the there’s-a-python/IDL/etc-package-
somewhere-which-does-it-all fashion caught in. Useful as these tools may be, there’s just no substitute
for DIY insofar as learning something is concerned. These notes are all about DIY, the Jurassic way.
The emphasis is really on basic DIY spectral analysis of galaxies, not on using the latest/fanciest
methods/models/data. Some of the exercises are actually downright silly, while others are probably
useless in serious work, but still useful to develop basic skills, and some I have not tried myself before.
Also, sometimes the student is lead to do something just to realize, later on, that (s)he’s done a
mistake, like applying a recipe/formulae where it does not apply. Finaly, there are very few references
or detailed explanations of anything. The teacher is supposed to provide them while teaching. Also,
there are no plots, as they’ll all be done by the students themselves! Programming skils are required.
Students should be able to handle ascii files and tables, perform numerical integrations and other
simple operations, as well as plot results.

1 SSP spectra from BC03

Get http://minerva.ufsc.br/∼cid/PG2012/BC03models.tar.bz2. This tar file contains BC03 spectra
of SSPs os 221 different ages and 6 different metallicities (m22 . . . m72, or m122 . . . m172), 2 different
IMFs (chab & salp) and two sets of evolutionary tracks (Padova1994 & Padova2000). Each of these
221× 6× 2× 2 = 5304 *-spec files is a simple 2 columns ascii table with λ (in Å) and the luminosity
spectrum produced by an SSP whose initial total mass is 1 M�, with λ running (unevenly sampled)
from 91 to 1600000 Å. The units of lλ are L�/ÅM�. The tar file further contains 4 tables

Base.bc03.Padova1994.chab.All

Base.bc03.Padova1994.salp.All

Base.bc03.Padova2000.chab.All

Base.bc03.Padova2000.salp.All
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to help you find the age (t) and metallicity (Z) of each *.spec file for a given choice of IMF and tracks.
All of this comes from the evolutionary synthesis models of BC03, a seminal work in the field.

Despite known problems (some of which have been fixed, others not), it is still the main reference in
the field, and an awfully useful place to start our work.

You should get familiar with these spectra! This is the goal of the exercises below. BC03
recomend the Chabrier + Padova1994 models (in Base.bc03.Padova1994.chab.All), so look at these
first, but write your scripts general enough to change to some other set of models easily.

Exercise 1.1 - The overall goal here is that you get a feeling of how SSP spectra change as a function
of t and Z, both in amplitude, global shape (say, colors), and detailed shape (absorption lines). Write
an illustrated essay on what you found. The following are general tips and stuff that you should
include in your essay.

1. Make a script/macro which makes a movie (sequence of plots) showing the sequence of lλ(t, Z,IMF,tracks)
spectra from the 1st to the last age in the models, for fixed Z, IMF and tracks. Make it flexible
enough to allow you to change the x and y scales.

2. To illustrate what Z does to an SSP spectrum, make plots of lλ(t, Z) for a fixed t and all different
Z’s. Chose log t/yr = 6, 6.5, 7.0, . . . 9.5, 10, 10.3. Do this for each of the 4 sets of IMF/tracks.

3. To illustrate what the IMF does to an SSP spectrum, compute the ratio of r = lλ(chab)/lλ(salp)
and plot it as a functin of λ. Do this for log t/yr = 6, 6.5, 7.0, . . . 9.5, 10, 10.3, and one Z at a
time. Then pick λ = 5635 and plot r as a function of t. Do this separately for Padova1994 &
Padova2000 tracks.

4. To illustrate what the choice of evolutionary tracks does to an SSP spectrum, overplot the lλ’s
obtained from Padova1994 and Padova2000. In the same figure, show a panel with the ratio of
the two spectra. Do this for log t/yr = 6, 6.5, 7.0, . . . 9.5, 10, 10.3, and one Z at a time. Use
the salp IMF throughout.

Be verborragic on figure captions. In fact, you don’t need a long text. Just describe briefly how
you deal with the data and leave discussions/descriptions for fig. captions.

Exercise 1.2 - Rectified/high-pass spectra. Differences in amplitude and continuum shape make
it difficult to compare variations in the absorption line strengths and profiles for different t’s and Z’s.
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One way to circumvent this is to rectify the spectra, dividing it by a fucntion which represents its
broad-range (”low-pass”, in the lingo of fourier filtering of signals) behaviour.1

We’ll do this folowing the recipe of Mathis et al (2006; MNRAS, 365, 385). They use a box-car
filter of length δ = 500 Å to compute, for each λ, the average of lλ in the lλ ± δ/2 window:

lLPλ =
1

δ

∫ λ+δ/2

λ−δ/2
lλ(λ− λ′)dλ′ (1)

One then divides the original lλ by this low-pass, smoothed version of it, obtaining an adimensional
”high-pass” spectrum:

sHPλ =
lλ
lLPλ

(2)

which should be a flat sHPλ ∼ 1 function except in regions containing absorption lines.

Let’s use this trick to inspect the BC03/chab/Padova1994 SSPs in the λ = 3650 to 8500 Å range.
For every t and Z, compute the corresponding sHPλ (t, Z) in this range. (Note that you’ll need the lλ’s
in the 3650− δ/2 = 3500 Å to 8500 + δ/2 = 8750 Å range to compute the low-pass spectrum lLPλ .)

♣ Overplot sHPλ (t, Z) for a fixed Z and different t’s. Tip: You may need to split t into ranges and
pick a few values to obtain a clear plot. For instance, one figure may be for log t = 8, 8.2, 8.4, 8.6, 8.8
and 9.0, and another one for log t from 9 to 10.2.

♣ Overplot sHPλ (t, Z) for a fixed t and the 6 different Z’s.

Besides helping you visualize things, rectified spectra are sometimes used to analyse the data.
The codes STECKMAP and ULySS, for instance, adopt this strategy, and MOPED can also be used
in this way. STARLIGHT has done so once (in Coelho et al 2009), but with an inefficient version.
Removing the global shape (ie, rectifying) is necessary when your flux calibration is not reliable on
long λ scales (say, you have a blue/red calibration problem because of badly corrected atmospheric
extinction, or you had clouds or problems while observing the standard stars). The downside is that
rectification throws away the continuum shape, which, as you must have realized by now, does contain
lots of information on the stellar populations.

Exercise 1.3 - Another way to study spectral variations as a function of t and Z is through derivatives
like

1Note: This procedure is sometimes called ”normalization” instead of ”rectification”. I use ”normalization” to mean
dividing a spectrum by a single number, not a function. Beware!
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Dt
λ(t, Z) ≡

(
∂ log lλ
∂ log t

)
Z

DZ
λ (t, Z) ≡

(
∂ log lλ
∂ logZ

)
t

In principle, Dt
λ and DZ

λ should show you which spectral regions are more sensitive to t and Z. These
need not (and will not) be the same for all t’s and Z’s, of course, so that, for instance, some λ’s will
be more sensitive to t for t around 108 yr while other regions will have higher derivatives for t of order
1010 Gyr. You’ll have to do it and see.

♣ Explore these ideas and produce pretty plots. I can think of a nice 3D-image with λ in the x-
axis, t in the vertical one and a color coded intensity map representing either Dt

λ(t, Z) of DZ
λ (t, Z).

The interpretation may be tricky, but in general terms you should see here what you’ve found earlier
looking the spectra (or their high-pass version) directly.

♣ You may want to try replacing lλ by sHPλ in the derivatives to get a cleaner picture of absorption
lines strengths variations with t and Z.

Note: Practical evaluation of these functions may require some computational tricks, since we have
discrete tables, while derivatives are meant to be applied to continuous functions. Use your imagina-
tion (or some python package) to deal with this. Ah: I’ve never done this myself! In fact, I suspect
it’s hard to make it work properly. . .

This is a long, laborious and rather tedious series of exercises. Because so much of what we’ll do
relies on SSP models, it’s important you do your best here.

2 Building composite stellar populations

Galaxies are not single SSPs. Some may be reasonably approximated in this way (like massive ellipti-
cals), but most aren’t, particularly spirals and irregulars, where the existence of multiple generations
is evident to the eye in any color image.

It is formaly simple to compute the theoretical spectrum corresponding to a system with an
arbitrary star formation history (SFH). All you need is to specify a function ψ(t) such that ψ(t)dt =
dM(t) gives you the mass formed in stars between t and t+dt. This mass dM in stars which nowadays
have age t will contribute a luminosity dLλ = lλ(t)dM(t) = lλ(t)ψ(t)dt to the galaxy spectrum. Adding
up all generations leads to

Lλ =

∫ T

0
lλ(t, Z)ψ(t)dt (3)
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where T is a generic upper limit (T ≤ 14 Gyr, the age of the Universe). A full description of the
SFH would require a description of the Z distribution of stars formed at each t, which we will not do
here. Assuming that all the gas which is forming stars at a given t has the same Z, chemical evolution
can be plugged in eq. 3 by specifying a Z = Z(t) function in the argument of lλ(t, Z). This is an
interesting exercise, but for our purposes here it will be sufficient to keep Z constant.

Piece of cake. But what function should I chose for ψ(t)? Once one choses a shape for ψ(t), limits
can be put on its amplitude such that it does not over/under predict the Lλ observed for the source(s)
you want to match. Still, there are infinite possibilities for the shape of ψ(t).

A widely popular choice is a decaying exponential starting at t = t0:

ψ(t) =

{
Ae−(t0−t)/τ if t ≤ t0;
0 otherwise.

(4)

where τ controls the effective lenght of the SF period. τ → 0 leads you to an SSP-like regime, while
for τ → ∞ one has a constant SFR regime. The birthdate t0 defines the age of the oldest stars seen
nowadays. The amplitude A defines the peak SFR, as well as the total stellar mass formed since t = t0.

Exercise 2.1 - For the exponentially decaying SFR of eq. 4, show that

A = A(M?, t0, τ) =
M?

τ

1

1− e−t0/τ
where M? is the total mass converted into stars during the galaxy life.

♣ At which age tX is X% of M? already formed?

♣ For t0 = 10 Gyr and τ = 5 Gyr, compute tX for X = 20, 50, 80 and 90%. Mark these ages and X
fractions in a plot of formed mass as a function of t.

Exercise 2.2 - Write a code which computes the predicted Lλ spectrum for an exponentially decaying
SFR. Use the BC03 Z� SSP spectra for a Chabrier IMF and Padova 1994 tracks.

♣ Plot Lλ(t = 0 = now) for t0 = 0.1, 1 and 10 Gyr, and τ/t0 = 0.1, 1 and 10. Use M? = 1M� for
all cases. The amplitudes of the resulting spectra will be very different. It’s instructive to make two
plots of Lλ: One in absolute units (L�/ÅM�) and the other in units of the Lλ at, say, λ = 5635 Å.

♣ For each of these 3×3 = 9 models, compute the mass M? necessary to match an observed luminosity
of 4.0× 106L�/Å at λ = 5635 Å.
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♣ For the spectrum of the t0 = 1 Gyr and τ = 10 Gyr model, plot (in a single frame): (a) the total
Lλ; (b) the Lλ associated to stars formed from t = 1 to 0.5 Gyr, and (c) the Lλ produced by the stars
formed in the last 0.5 Gyr. What do you conclude from the plot?

ATT! As you’ll hopefuly find out for yourself in the exercise above, there are numerical issues to
solve when your SFR function varies substantially on time scales comparable to the age sampling of the
lλ(t, Z) SSP spectra. . . The conversion of 3 to a summation needs care. Interpolating lλ(t, Z) to a fine

t-grid is one possible solution. Another one is to compute, analitically, the mass ∆Mi =
∫ tluppi

tlowi
ψ(t)dt

in each of the ti-bins in the SSP age-grid (i = 1 . . . 221), and replace eq. 3 by

Lλ =

∫ T

0
lλ(t, Z)ψ(t)dt ≈

∑
i

lλ(ti, Z)∆Mi (5)

You’ll have to figure out which option is best. Sanity checks include comparing the spectrum for
some τ � t0 (i.e., a very small θ) with that of an SSP of age t0. They should be very similar, in shape
and amplitude.

Exercise 2.3 - For a generic ψ(t) function, derive analytical expressions for:

1. 〈t〉M = the mass-weighted mean stellar age

2. 〈log t〉M = the mass-weighted mean stellar log age

3. 〈t〉L(λ) = the mean stellar age weighted by its contribution to the light at λ

4. 〈log t〉L(λ) = the mean stellar log age weighted by its contribution to the light at λ

♣ Compute 〈t〉M and 〈log t〉M = for the 9 (t0, τ) combinations of the previous exercise.

♣ Compute 〈t〉L(λ) and 〈log t〉L(λ) for the same 9 models, and plot the results as a function of λ. Yes,
these are ages which depend on wavelength!

It has recently become popular to invert the sign of the exponent, such that SF rises from some
t1 > t0, peaks at t0 and then shutts off. Other variants allow for randomly located bursts, defined by,
say, box-car functions ψburst(t; tb, τb,Mb) which form a mass Mb in the period from t = tb to tb − τb.
Such bursts are then added to a more smoothly varying ψ. No one has yet proposed a sinusoidal ψ,
but hey, why not? The sky is the limit! How are you going to decide which SFH represents your
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data best? Surely, given so much liberty, many possibilities will yield similar results (ie, same or very
similar predicted observables), and you’ll never know the real one. Degeneracy is part of this game.

A popular (and powerful, but not perfect) approach to this issue is to bypass the hopeless quest for
”the” unique solution and admitt precisely the opposit, ie, that everything is possible! It’s just that
some solutions are more likely than others. The general idea is to build a huge library of models for
wildly different SFHs. For each model is this collection you tabulate a series of observables (spectral
indices, colors, or the full spectrum Lλ itself). You then compare each to your observations, and
compute its likelyhood through, say, its χ2—for gaussian errors, the likelyhood is ∝ e−χ2/2. Now you
have a long table with one likelyhood for each model SFH. Then you start making questions like:
What is the stellar mass M?? What is the mass-weighted mean age of the stars? And etc. The
answer will not be a number, but a probability distribution function (PDF), where all models (no
matter how crazy) are included (crazy models will have low likelyhood, and thus weight little on your
PDF). PDFs may be cumbersome to work with but have many advantages, one of which is that it
allows you evaluate uncertainties. Maaaaanny papers use this approach nowadays. The early papers
by Brinchmann, Gallazzi and Kauffmann on SDSS data, are examples. We’ll do this ourselves in this
course soon.

3 SFR indicators

The previous chapters we purely theoretical. The ones below, starting here, are more observationally
geared. We’ll make use of the models above, but now thinking of ways to relate them to the real world.
This section focuses on ways of estimating the recent SFR of galaxies. It’s still purely theoretical in
the sense that no observational data are used, but at least we’re getting closer to real data.

3.1 Using SSPs-spectra to devise/test possible SFR indicators

Everyone estimates SFRs somehow. There are several subtleties and implicit assumptions in this
game, so let’s try to do these ourselves from scratch.

Let

• dM(t) = ψ(t)dt be the mass turned into stars between t and t+ dt.

• l(t) be a function which describes the evolution of some generic radiative output per unit formed
mass2 of an SSP. l can be the luminosity (per unit formed mass) at some wavelength λ (in
which case its natural units are L�/ÅM�). It can also represent the luminosity in a given filter

2When talking about masses of stellar systems one must always distinguish between the mass which was turned into
stars from the one which remains in stars. This is because stellar evolution ejects stuff back into the ISM though winds,
SNe, PNe, etc., so that not all that go into stars stays in stars—in fact, you and this pdf file are made of excreted stellar
material! As much as 50% of the mass of an SSP can go back to the ISM during a Hubble time, depending (among other
things) on the IMF. This is why ”formed mass”, ”initial stellar mass” and other awkward expressions appear in these
notes. Keep this in mind.
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(units of L�/M�), or the number of ionizing photons produced per unit time and mass (units
photons/sM�).

The goal is to compute the l-thing for a composite stellar population resulting from a period of
constant SFR from T years ago till today (t = 0). Hopefully, this will lead to an empirical (though
model dependent) way of measuring the SFR (ψ) out of some observable related to l.

The amount of l-light we receive from stars formed t years ago is just

dΛ(t) = l(t)dM(t)

so that adding all the stars formed since t = T (just like in eq. 3) we would see, today, a total of

Λ = Λ(T, ψ) =

∫ T

0
l(t)dM(t) = ψ

∫ T

0
l(t)dt (6)

where we have already assumed that ψ(t) = constant in the last T years, and zero before that.
Clearly, if l(t) is something which decays quickly with time (like the ionizing radiation, which is

mainly produced by massive, short-lived stars), old populations would add up little or nothing to
the integral, so the integral should converge quickly. Conversely, if l is, say, the luminosity at a red
wavelength, where stars of all masses/ages contribute, the integral should increase steadly with T .
Things which increase indefinitely with T (like the latter example) will not give you a good estimator
of the recent SFR.

We’ll now play with different choices for l, computing and ploting Λ versus T . This should give us
clues as to which observables are useful to estimate SFR’s.

Exercise 3.1 - Use the BC03 model SSP spectra for a Chabrier IMF and Padova 1994 tracks, to
compute (for each Z separately),

1. The monochromatic luminosities per unit formed mass (call them lλ) at λ = 1528, 2271, 3543,
4020, 4770, 5635, 6231, 6533, 6593, 7625, 9134 Å, and 1.2, 1.6, 2.2,3.4, 4.6, 12 and 22 µm. (No,
these are not random choices!)

2. The H-ionizing photon rate per unit formed mass (qH). To do so, integrate what has to be
integrated (. . . ) for energies ≥ 13.6 eV (λ ≤ 912 Å).

3. The bolometric luminosity per unit initial mass, ie, lbol =
∫
lλdλ.

♣ Plot the lλ’s, qH and lbol against the age t, one curve for each of the 6 metallicities (m22, m32
. . . m72). Judging by the looks of your plots, evaluate (qualitatively) which ones are more suitable to
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estimate the recent SFR.

Exercise 3.2 - Apply eq. 6 to each of the different incarnations of l(t) in the exercise above. Present
the results as plots of the corresponding Λ/ψ curves as a fucntion of T . Use T -values equal to the 221
ages in the BC03 files.

Again, juding by the looks of your plots, evaluate which ones are more suitable to estimate the
recent SFR. This time, you can be more quantitative, and estimate, for each tracer, the time-scale
over which it provides a useful estimator of ψ. One way of doing this is to compute the value of T for
which Λ reaches, say, 90% of its asymptotic value (if there is one!).

Exercise 3.3 - The Hα luminosity is a champion SFR indicator (e.g., Kennicutt 1998, ARAA). From
recombination theory, we know that one out of each 2.22 ionizing photons produces an Hα photon.
Luckly, this number changes very little as a function of nebular conditions like temperature and density.

Use your numbers for qH and the results for the corresponding Λ to estimate the coefficient k in

SFR

M�yr−1
= k × L(Hα)

L�

Note 1: There will be one k for each Z. Compare your coefficients with those in the literature.
Note 2: Implicit assumptions here include that no ionizing radiation escapes the nebula, that

L(Hα) has been corrected for extinction, and that dust does not eat much of the hν > 13.6 eV pho-
tons (at least it does not compete with HI in this sense).

Exercise 3.4 - Re-do all the above using BC03 models for a Salpeter IMF. Interpret the differences
wrt the Chabrier IMF.

Exercise 3.5 - Re-do all the above using BC03 models for Padova 2000 tracks.
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Exercise 3.6 - NGC 604 is an HII region in the nearby galaxy M33. It’s ionizing star cluster is about
3 Myr old, and the (extinction corrected) Hα luminosity is 1039.63 erg/s. Estimate its SFR. (Since
NGC 604 has a gas-phase metallicity well below solar, I suggest you use the k coefficient for the
m42-models/Z = 0.2Z�.)

♣ Now think about what you’ve done . . . Was it a wise thing to apply your SFR = kLHα relation to
this object? (One-word-tip: age!)

♣ If estimating the SFR for NGC 604 was not a good idea, what else could you derive from knowledge
of its Hα luminosity and age? (Tip: Given an answer in solar masses.)

3.2 Dust emission as a SFR-tracer.

Dust eats light and reprocesses it into thermal emission in the far infra-red. Modeling the dust emission
is a complex issue, much beyond my powers, but all we need here is a simple energy-budget kind of
calculation.

For an uniform dust-screen in front of a source which emitts a L0
λ spectrum, the transmitted (ie,

observed) luminosity is Lλ = L0
λe
−τλ . The total energy eaten up by dust and reprocessed into FIR

radiation is thus

R =

∫ ∞
0

(L0
λ − Lλ)dλ =

∫ ∞
0

L0
λ

(
1− e−τλ

)
dλ (7)

which can be equalled to the total FIR luminosity (LFIR), an observable quantity (with caveats related
to how the FIR range is sampled by actual observations).

Note that R depends on the quantity (τV ) of dust and its ”quality” (the qλ ≡ τλ/τV extinction
law). It is convenient to factor scales out expressing R in units of the intrinsic bolometric luminosity
of the system, Lbol =

∫∞
o L0

λdλ, leading to the reprocessed fraction

r = r(τV ; qλ) ≡ R(τV ; qλ)

Lbol
=

∫∞
o L0

λ (1− e−τλ) dλ∫∞
o L0

λdλ
=
LFIR
Lbol

(8)

From previous work, you should have lbol(t, Z), the bolometric luminosity per units mass of an
SSP of age t and metallicity Z, i.e., the denominator of r. Before going into SFR-related stuff, it’s
usefull to play with r for SSPs.

Exercise 3.7 - Forget IMF, tracks and Z for a while, and use only BC03 SSPs for the Chabrier IMF
and Z� Padova 1994 tracks. Assume a simple qλ = (λ/5500Å)−0.7 law and compute/plot r(t) for SSPs
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of different ages (all 221 of them) for τV = 0, 1, 2, 3, 5, 10.

Exercise 3.8 - Extinction laws (qλ) are known from the UV to the optical and beyond, but little is
known about its behaviour below the Lyman limit, where neutral H and dust particles compete to see
who is going to eat an ionizing photon first. In other words, we know little about qλ for λ ≤ 912 Å.
To bracket possible solutions, take the two limits: qλ = 0 and qλ = ∞ for λ ≤ 912 Å. Do this and
compare the resulting r(t) plots with those obtained above.

Exercise 3.9 - Repeat the exercise above for qλ following a Calzetti law. You’ll have to find it from
the literature!

At this stage you should be able to obtain an expression for R for the case of a constant SFR
between t = 0 (now) and T . As before, the resulting expression should depend on ψ and T (from eq.
6), but now τV and your choice of qλ should also appear in the math. The result is

R = R(T ; τV , qλ) = ψ

∫ T

0

∫ ∞
o

l0λ
(
1− e−τλ

)
dλ dt (9)

As usual, to scale-away things it may be useful/convenient to adimensionalize things, expressing
R in units of the corresponding Lbol

LbolR(T ) = ψ

∫ T

0

∫ ∞
o

l0λdλ dt (10)

(though this is not necessary for the exercises below).

Exercise 3.10 - Plot R(T ; τV , qλ)/ψ curves as a fucntion of T . Use T -values equal to the 221 ages in
the BC03 files, the Calzetti law, and overplot curves for τV = 0, 1, 2, 3, 5, 10.

♣ What do you conclude about the dependence on T? Is R = LFIR a useful indicator of the SFR
(ψ)? Over which time scales?

♣ If you were to write
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SFR

M�yr−1
= k × LFIR

L�

what value of k would you take, and what would be the undelying assumptions in your deriva-
tion/estimation of the SFR?

♣ Compare your k coefficients with those in the literature.

♣Many people interpret LFIR as originating from dust heated by the same young stars responsible for
powering emission lines like Hα and many others. Based on your experiments, do you agree with this?

4 Magnitudes

Why use a constant minus 2.5 times the log of the thing instead of the thing itself? Magnitudes suck,
but you’ve gotta live with them. We’ll soon analyse some magnitude based data on real galaxies, so
let’s open a parenthesis to get used to this system.

Suppose you measure some kind of ”flux” Q (say the photon flux, or an energy flux, maybe
monochrmoatic or maybe in a band through a filter, counts in a CCD, etc). You’d express it as
magnitudes through

m = −2.5 logQ+ ZP = −2.5 log
Q

QZP
(11)

where ZP ≡ 2.5 logQZP is a zero-point, such that a source with a flux QZP has m = 0 (by definition).
There are different systems to define Q’s and their ZP ’s. The most popular nowadays seems to be the
AB system, which is defined in spectroscopic terms. Suppose you have a source whose flux density
spectrum is fν , in ergs s cm−2 Hz−1. The corresponding AB magnitude at frequency ν is defined as

mAB(ν) = −2.5 log fν − 48.60 (12)

such that a source with flat spectrum fν = fZP = 3.631 × 10−20 ergs s cm−2 Hz−1 will have an AB
magnitude = 0 for any ν.

Ok, but so far this is just an awkward way of rewriting fν . Let’s now think of the magnitude in a
broadband filter (say, the r filter) coupled to a photon counting device such as a CCD. When you do
an observation of a source whose energy spectrum is fν , you will collect Q photons

Q = A× t×
∫
fν
hν
Rνdν (13)
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whereA is the telescope area, t is the exposure time and fν
hν is the photon flux3 in units of photons s−1 cm−2 Hz−1.

Rν is the response function of the system (atmosphere, telescope, detector, filter transmisivity, . . . the
whole thing). It tells you that for every N photons coming from the source you will only detect
N × Rν of them. For our purposes, pretend Rν represents the filter transmissivity profile, but it in
facts embeds everything else.

If you were to point to a fν = fZP = 3.631× 10−20 ergs s cm−2 Hz−1 source you would count

QZP = A× t×
∫
fZP

hν
Rνdν (14)

photons. The AB magnitude of your source, through your chosen Rν filter, is thus

mAB = −2.5 log
Q

QZP
= −2.5 log

A× t×
∫

(fν/hν)Rνdν

A× t×
∫

(fZP /hν)Rνdν
(15)

mAB = −2.5 log

∫
fνν
−1Rνdν∫

ν−1Rνdν
− 48.60 (16)

where the −48.60 comes from +2.5 log fZP . (Sometimes one writes dν/ν as d ln ν, or even as d log ν,
since the log e factors would cancel out anyway).

Notice that what you have inside the log is a weighted mean value of fν , where the weight is Rν/ν.

fν =

∫
fν(Rν/ν)dν∫
(Rν/ν)dν

= 10−0.4(mAB+48.60) (17)

and notice too that the assumption that we are using a photon counting device is impregnated in this
definition. If our detector measures energy (say, a bolometer instead of a CCD), then the weight is
just Rν and the ν−1 factors disappear.

In our case, we’ll want to compare models and data, so we’ll need to convert model fluxes to AB
magnitudes, or, conversely, transform observed AB magnitudes to (weighted mean) fluxes. From the
last equation you see that this is not so hard: All we need to know is Rν .

Exercise 4.1 - From ν → λ. We’ve used fν ’s so far, but in the UV-optical-IR its is customary to
work with fλ’s, in units of ergs s−1 cm−2 Å−1. The SSP spectra we played with, for instance, are given
in per Å form, not in per Hz.

All we need to know to convert things is that fνdν = fλdλ and νλ = c. Show that

mAB = −2.5 log

∫
fλλRλdλ∫
λ−1Rλdλ

− 2.41 = −2.5 log

∫
λ2fλ(Rλ/λ)dλ∫

(Rλ/λ)dλ
− 2.41 (18)

3Important note: Notice that hν appears because we are counting photons. If, instead, our detector counts energy,
the hν would not appear in this equation.
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♣ Just to make sure you’re on the ball, which units for fλ and λ are assumed?

Note that going from ν → λ screws up the notion that the thing which goes inside the log is a
weighted mean flux density, ie, we cannot associate the argument of the log to some fλ as we did in
eq. 17 for fν . In this λ-based formulation, the argument of the log is, instead, a weighted mean of the
product λ2fλ, with weight = Rλ/λ.

λ2fλ =

∫
λ2fλ(Rλ/λ)dλ∫

(Rλ/λ)dλ
(19)

This unfortunate fact of life comes about because a flat fν spectrum, which is entrained in the
definition of AB magnitudes, is not flat in fλ; in fact, fν = constant implies that λ2fλ = cfν =
constant, so that fλ ∝ λ−2. To reinforce what was just said, strange as it may seem, mAB gives you
a fν , but not a fλ!

The reason I say unfortunate is that we are all used to fλ, but to work with AB mags we need to
switch to a slightly different thing, namely, λ2fλ. There’s a relatively clean way of sorting this mess,
but before showing it, lets first illustrate that working with fν ’s is no such big deal afteral.

Exercise 4.2 - Translating BC03-SSP spectra to absolute AB mags. The bc2003*.spec SSP
files you’ve downloaded give you lλ in units of L�ÅM�. If your SSP has an (initial) stellar mass M?,
its luminosity density spectrum is Lλ = M?× lλ. Put it at a (luminosity) distance d away and its flux
will be

fλ =
Lλ

4πd2
=
M?lλ
4πd2

or, written in terms of fν

fν =
Lν

4πd2
=
M?lν
4πd2

=
M?lλλ

2

4πd2c
You’ll now compute mAB for a distance of 10 pc, such that the apparent magnitude equals the

absolute one, MAB. Throughout, keep M? = 1M�, so that your fluxes and magnitudes reflect that of
an idealized 1M� SSP at d = 10 pc. You’ll need to know that L� = 3.826× 1033 erg/s, and that 1 pc
= 3.086× 1018 cm.

Before doing actual filter-photometry, let’s do ”monochromatic photometry”, ie., compute MAB

for a single frequency (wavelength). Use the BC03 Chabrier/Padova1994 models. Our MAB’s will
depend on λ, t and Z, and also on M?.

(a) Plot MAB(λ) vs. λ for SSPs of 106, 107, 108, 109 and 1010 yr and the 6 metallicities in BC03.
Make the plots on the same scale to facilitate comparisons.
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(b) Plot MAB(λ) vs. log t for the following λ’s: 3543, 4770, 6231, 7625 and 9134 Å. Do this only for
Z = Z� (the m62 models). Not coincidentaly, these are the central wavelengths of ugriz SDSS filters.

(c) What is the MAB(λ = 6231) of a 1011M�, 10 Gyr, Z� SSP? What would be its mAB for a distance
of 100 Mpc?

(d) Let’s now do filter photometry. Re-do exercise b above, this time using the actual response
functions Rλ of SDSS ugriz filters. (For filter profiles, see our course web deposit).

(e) Compare the ”monochromatic” MAB’s with those just derived. As long as a filter is not too
wide and/or does not cover regions of wild spectral variations (spectral breaks), the results should be
similar.

Exercise 4.3 - If you hate all this mess and insist on working with fλ’s—as I do but perhaps you
shouldn’t!—you can always redefine the weight and obtain a different kind of weighted mean fλ which
does correspond neatly to a measured AB magnitude.

♣ For a weight rλ ≡ Rλ × λ, show that

fλ(mAB) =

∫
fλrλdλ∫
rλdλ

=
1

λ2?
10−0.4(mAB+2.41) (20)

where λ? is a funny kind of weighted mean wavelength representing the filter, defined by

1

λ2?
≡ λ−2 =

∫
λ−2rλdλ∫
rλdλ

(21)

Conversely, you may want to express mAB in terms of these new definitions

mAB = −2.5 log λ2?fλ − 2.41 (22)

This trick allows one to carry on doing averages in λ space. Since I’m used to seeing spectra in fλ,
I can use this to plot a fλ spectrum and overplot a point corresponding to a photometrically measured
fλ.

♣ Compute λ?-values for the ugriz SDSS filters.

OBS: These are things I just invented to satisfy my own philosophical needs. Not that it’s a relevant
”discovery”, but I just want to note that I did not find it in the literature (including google!), though
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it’s surely there somewhere.

One needs experience to make sense of a statement like ”the r-band magnitude of the source
is mr = 17.7 in the AB system”, or to get a feeling of how many suns would fit in a MAB(r) =
−21.0 galaxy. (Magnitudes suck, did I say that before?) Yet, when some one says ”the photometric
uncertainty is ±0.13 magnitudes” (in whichever system), one immedeately knows that the fluxes are
measured with a ∼ 13% accuracy. This is because, as you can easily show, an error ∆m relates to an
error in fλ through

∆m = (2.5 log e)
∆fλ

fλ
∼ ∆fλ

fλ
(23)

I’ve used fλ here, but the same applies to fν .

5 DIY SED fitting

SDSS Mobs
FUV Mobs

NUV Mobs
u Mobs

g Mobs
r Mobs

i Mobs
z Mobs

J Mobs
H Mobs

K

B ± ± ± ± ± ± ± ± ± ±
G ± ± ± ± ± ± ± ± ± ±
R ± ± ± ± ± ± ± ± ± ±

Table 1: Absolute AB mags for 3 galaxies (K-corrected and derredened by Galactic extinction).

SED = Spectral Energy Distribution. This may mean different things for different people. Tech-
nically, it can mean a proper spectrum, fλ, measured λ-by-λ. But most (including me, I and myself)
take SED to mean a sparse set of flux measurements, like ugriz photometry of a system.

The goal here is to combine what we learned about stellar population models (§1 and §2) and how
to deal with AB magnitudes (§4) to use photometric data on galaxies to infer something about their
properties (masses, SFHs, etc.). This is the first time you’ll start applying your just acquired skills to
actual data! We’ll play with magnitudes but exactly the same formalism/procedure can be used for
other observables.

This whole section will be about using (some or all of) the data in Table 1 to infer/estimate
properties like the stellar mass, mean age, mean Z, extinction, etc. The table gives AB magnitudes
from FUV to K for 3 galaxies, named B, G and R (for obvious reasons). Since everything you do will
have to be done 3 times, write your programs smartly enough!

The general script of this section goes like this:

1. Build a reference library of models.
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2. Find the best model fit for galaxies B, G and R.

3. Apply simple bayesianities to produce a revised/refined analysis of the same data.

4. Re-do things for different subsets of the data in Table 1.

As usual in these notes, you’ll do all of the work yourself. To get started, let’s use only a subset
of these data (the ugriz photometry) and build our tools and skills from there.

5.1 ugriz magnitudes: Building the tools

Consider only the absolute ugriz magnitudes of B, G & R in Table 1. We want to us these data to
infer/estimate stellar population properties, ie, to do a ”from data to parameters” journey.

You’ll first need a library models to compare your data with. Let’s keep things as simple as
possible and treat galaxies as SSPs, such that their stars formed all at the same time and have the
same metallicity. A bad assumption, surely, used for two purposes: Simplify things, and illustrate
that bad assumptions do not prevent you from working! (Afteral, you can always fit a parabola with a
straight line and estimate it’s a and b coefficients . . . ) You’ll later see that it’s trivial to expand/change
your library to incorporate more realistic SFHs. We will, however, introduce one minor complication:
Extinction. Let’s get to work.

Exercise 5.1 - Building a reference library. Once again, let’s stick to the BC03/Chabrier/Padova1994
model set. There are 1326 SSP spectra there (221 t’s × 6 Z’s). Let’s make 21 versions of each of
these, by applying a Cardelli, Clayton & Mathis (1989) reddening-law, with AV = 0, 0.1 . . . 1.9, 2.0.
In case you forgot, lλ(t, Z,AV ) = lλ(t, Z,AV = 0) × 10−0.4AV qλ , where qλ = Aλ/AV . (If you’re too
lazy to type in all the coefficients in the CCM law, the file ExtLaws.out lists qCCMλ in its 2nd column.)
Note: The CCM law does not span the same λ-range as the BC03 spectra, but that’s Ok, since we
only require reddened spectra in the range of our filters. In other words, apply ×10−0.4AV qλ in the
1000—33333 Å range for which the CCM law is defined and pretend qλ = 0 elsewhere.

For each of the 1326× 21 = 27846 models, compute the ugriz MAB’s for a 1M� SSP. Since these
MAB’s are for a SSP borned with just 1 M�, lets call them Mmod

b (t, Z,AV , 1M�), where b denotes the
band. Organize your results in a table with 27846 lines and 3 + 5 = 8 columns: In the first 3 columns
store the parameters t, Z and AV . In the following 5 columns store the predicted ugriz Mmod

b ’s.

Exercise 5.2 - Finding the best fit. Now that we’ve built our reference library, let’s find which of
these 27846 models best matches each of the B, G and R galaxies in Table 1. By ”best match” we’ll
adopt the conventional least-χ2 (maximum-likelyhood) criterion. We thus seek to minimize
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χ2 = χ2(t, Z,AV ,M?|Mobs
b , σb) =

∑
b

(
Mobs
b −Mmod

b (t, Z,AV ,M?)

σ(Mobs
b )

)2

(24)

Just browse through your Mb (where b = u, g r, i and z) library-table and you’ll quickly realize
that none of your models comes even close to matching the Mobs

b ’s of B, G nor R. That’s because our
library was built for a M? = 1M� ”mini-galaxy”, while the Mmod

b which goes in the above equation
is that for a generic mass M?. We need to scale up our model Mb’s to realistic galaxy stellar masses.
A stupid way of doing it is to add yet another dimension to our library grid, computing Mb’s for, say,
logM?/M� = 8.0, 8.1, 8, 2 . . . 12.9, 13.0, boosting Nlibrary from 27846 to 1420146. You do not wanna
do that!

Here’s how you get around this problem. M? has a trivial effect on our models: It just scales things
up linearly in luminosity. It should be clear that for a generic M? the absolute magnitude would be

Mmod
b (t, Z,AV ,M?) = Mmod

b (t, Z,AV , 1M�)− 2.5 logM?/M�

Hence, M? just adds a constant term to the Mb-values in our library. Now ask yourself this: For a
given choice of (t, Z,AV ), what is the value of M? which best matches the Mobs

b data? The answer
comes from solving

∂χ2

∂M?
= 0 (25)

which you shoud DIY to find that the optimal M? satisfies

2.5 logM?(t, Z,AV |Mobs
b , σb) =

∑
w2
b

[
Mmod
b (t, Z,AV , 1M�)−Mobs

b

]
∑
w2
b

(26)

where we’ve defined wb ≡ 1/σb. This result is really trivial. The RHS is just the (weighted) mean
difference in magnitudes between our 1M� SSP and the source. The LHS tells you the mass which
minimizes this difference. You now know, for each of your (t, Z,AV ) 27846 models, what M? to use
in order to best match the ugriz data for galaxy B, G or R.

♣ Do the calculations. Organize your results in a table with 27846 lines and 4+1+5 = 10 columns. In
the first 4 store t, Z, AV and M?. In the 5th column store the χ2 of this model, and in the remaining
ones store the predicted Mmod

b values for b = u, g, r, i and z. There should be one such table for each
of B, G and R.

♣ Pick the best model (smallest χ2) you find and fill in Table 2.

♣ For didatic purposes, also fill in Table 3, where δb = (Mobs
b −Mmod

b )/σb measures the (adimensional)
distance between models and observatons in units of the corresponding uncertainty (ie, each of the
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SDSS t [yr] Z/Z� AV M?/M� χ2 Mmod
u Mmod

g Mmod
r Mmod

i Mmod
z

B

G

R

Table 2: Best fit models for galaxies B, G & R.

SDSS δu δg δr δi δz ∆ [mag]

B

G

R

Table 3: Residuals from best fits.
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terms in the χ2 summation). Decent fits should have δb ∼ 1. The last column in this alternative table
is an alternative figure of meritt, defined as

∆ =
1

Nb

∑
b

|Mobs
b −Mmod

b | (27)

which gives you a feeling of how good your fit is. This is not a conventional statistic (like χ2), but it’s
easily interpreted and does not depend on the (sometimes hard to compute) errors σb.

♣ Now that you have found a best model, you may want to plot its λ-by-λ MAB(λ) spectrum, over-
ploting the 5 photometric points following the tips and formulae in §4. If all went well, the model
should be close to the data points!

5.2 Bayesianities and a probabilistic/statistical re-analysis of the ugriz data

Well done. You’ve fitted the data. But, are you sure your best fit is a unique solution? Clearly
not. Other models in your own library surely give χ2’s nearly as good as the best you found, but for
(t, Z,AV ,M?) parameters which are not necessarely close to the ones you got. Some sort of statitical
analysis/error estimation is in order. As mentioned in §2, the way to do this is to build PDF’s. The
”P” in PDF means probability, and probabilities are the realm of Bayesian statistics.

Each of the i = 1 . . . 27846 models in your library has an associated likelyhood Li, which measures
the probability of observing the data you got given an assumed set of parameters and the errors.
Assuming that the b =u, g, r, i and z measurements are independent (not correlated), it follows that
the probability of measuring Mobs

u and Mobs
g and . . .Mobs

z is the product of the individual P (Mobs
b |i)

probabilities for each filter. Further assuming gaussian errors for each Mobs
b , one has

Li ∝ e−
1
2
δ2u,i × e−

1
2
δ2g,i . . .× e−

1
2
δ2z,i = e−

1
2
χ2
i (28)

where δb = (Mobs
b −Mmod

b )/σb are the same dimensionless residuals used in Table 3.
To assign a probability to model i you should also specify a prior expressing things you know

about the parameters before looking at the data! Sounds odd but you do this all the time, even when
you do not realize it! In our case, priors were already built in our library. One of them states that
0 ≤ AV ≤ 2, with equal probability for any value in this range, i.e., P (AV ) = constant for 0 ≤ AV ≤ 2,
and P (AV ) = 0 otherwise. The inclusion of SSPs-only is also an implicit prior assumption (a pretty
bad one, by the way). You always have priors, since you always make assumptions!

Denoting the set of parameters by a vector pi and denoting the data by D (including all Mobs
b and

σb values), the posterior probability of model i given the data is

P (pi|D) ∝ prior × likelyhood = P (pi)P (D|pi) (29)
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The difference between prior and posterior is, of course, what you have learned from the experiment.
If P (pi|D) is to behave like a probability, it should add up to 1, so:

P (pi|D) =
P (pi)P (D|pi)∑
i P (pi)P (D|pi)

=
P (pi)e

−χ2
i /2∑

i P (pi)e
−χ2

i /2
(30)

Notice that you have all you need to compute the RHS of this equation.
Since the index i represents a given set of parameters, ie, pi = ~pi = (ti, Zi, AV,i,M?,i), our P (pi|D)

gives you a multidimensional joint probability. Nice, but often hard to work with. It’s often more
useful/convenient to project some of the dimensions of the parameter-space to construct PDFs for one
or two parameters. This is called marginalization. Let’s see how to do this in practice.

Exercise 5.3 - Bayesian SED analysis - estimating 1D PDFs. Let’s focus on a single param-
eter, t, and ignore all the others. The way our library was built we already have a pre-established
grid of t values (the 221 ages in BC03), but let’s pretend we do not just to make things more general.
Define yourself a grid of ages, say, uniformly spaced in its log: xk = x0 + k×∆x = 0 . . . Nx− 1, where
x ≡ log t/yr. Bin xk corresponds to log t in the xk ± ∆x/2 range. Chosing x0 = 5, ∆x = 0.1 and
Nx = 53 is enough to cover the whole log t range with good resolution, but you should play with ∆x
to see if and how it affects your results.

In the previous exercise you’ve built a table with t, Z, AV , M? and the corresponding χ2, one
table for galaxy B, another for G, and another for R (Table 2). But you only used it to find the best
fit. Now you’ll use all entries to build PDFs. First, use these data to compute the denominator in eq.
30, and then use the same equation to compute the P (pi|D) probability associated to each model in
the grid. Use a flat prior P (pi) = 1, meaning that all models are, a priori, equally possible.

Now loop over your xk grid. For each k, loop over your i = 1 . . . Nlibrary = 27846 table, adding
up the probability of all models whose log ti is within xk ±∆x/2. In the end you’ll have a PDF(xk)
array. Notice that a given xk-bin will contain models of wildly different Z’s, AV ’s and M?’s. We’re
marginalizing over them cause all we care about is the PDF for ages. We’re collapsing a 4D space to
1D.

♣ Plot your PDF(log t). Plot the results for B, G & R in a single frame. It is instructive to mark the
best values of log t found in the previous exercise.

♣ Now that you’ve done it for x = log t/yr, it’s easy to do it for x = logZ/Z�, x = AV and
x = logM?/M�, so do it.

♣ If you were to plot a PDF for, say, the Mmod
g values, what should it look like? While you’re on it,

why not do it and check if you guessed right? Tip: Although equivalent, it’s more instructive to plot
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the PDF for δg = (Mmod
g −Mobs

g )/σg.

Exercise 5.4 - Bayesian SED analysis - PDF summaries. PDFs are cool (they represent the
complete solution to an inference problem), but if you ask them ”What is the value of t?” they’ll
answer you a function, not a number. It’s therefore useful to summarize the PDF through statistics

like its mode or its mean (x). Also, from its second moment (x2) you can derive σ(x) =

√
x2 − x2, a

standard estimate of the uncertainty in your estimate of x. If you prefer robust statistics, you can eas-
ily find the median (x50%) and the x-interval around the median which contains, say, 68% (equivalent
to ”1 sigma”) of the probability, or 95% (”2 sigma”), etc.

♣ You’re now equiped with numbers to refill Table 2, this time quoting values and uncertainties for
the parameters. For each parameter, quote it’s mean ± its standard deviation.

Exercise 5.5 - Bayesian SED analysis - 2D PDFs. It’s simple to generalize the 1D-PDF exercise
above to 2D. Pick 2 variables, like x = log t and y = AV . Bin them in a uniform grid: x = xk, y = yl,
with k = 0, 1 . . . Nx − 1 and l = 0, 1 . . . Ny − 1. You now have to compute a matrix Pkl containing the
total probability in each (xk ±∆x/2 , yl±∆y/2) 2D bin (representing a box in an x-y diagram). The
result will now be an image Pkl representing the joint PDF of x and y.

♣ Plot 2D PDFs for all pairwise combinations of log t/yr, logZ/Z�, AV and M?. Interpret your plots.

Exercise 5.6 - Playing with priors. P (pi) priors often disappear from the analysis (ie, they are
set to a constant which cancels out in eq. 30). Let’s illustrate how to incorporate more informative
priors in the analysis.

♣ Our library allows for ages in the 0–20 Gyr range. If you believe cosmologists, the Universe has 14
Gyr, so models with t > 14 Gyr are absurd. You should thus re-do all you did by setting P (pi) = 0
for all models where ti > 14 Gyr (equivalent to eliminating them from the library).

Suppose now that your religion postulates that stars in the Universe have a log-normal (i.e., a
gaussian in the log) distribution of Z’s centered on the solar value, such that
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P (pi) ∝ e−
1
2((logZi−logZ�)/σlogZ)

2

This does not forbid library entries with Z 6= Z�, but it gives them less weight. How much less? Much
much less if σlogZ is small (say, 0.1 dex), and not much less if σlogZ is large (say, 1 dex).

♣ Re-do your plots of 1D-PDFs for all parameters adopting σlogZ = 0.1, 1 and 10. The latter case
(σlogZ = 10) is such a wide prior that in practice it differs little from no prior at all, so your results
should be essentially the same you found before.

♣ You can play this game for other priors. For instance, you can now join the church-of-the-unpolluted-
cosmos, which does not believe in dust (AV = 0), or defy current cosmology and adopt an Universe
1 Gyr old (so only t ≤ 1 Gyr is allowed). Etc, etc. These are stupid examples, of course, but they
illustrate how to use prior-beliefs when you have them.

Exercise 5.7 - Playing with errors. Redo the PDF plots above changing the σb given in Table
??. Make them both larger (eg., σb ← 3σb) and smaller (eg., σb ← σb/3). Do the results match your
expectations?

The library used in these exercises is, I’ve said it before, too simple, so don’t be surprised if you
found bad and/or crazy results. For starters, it’s based on SSPs. This may be good for stars clusters
(CF & González Delgado 2010) or massive ellipticals, but not for galaxies in general. The exercises
above illustrate the procedure, but in real work one needs more realistic libraries. These can be built
from models for composite stellar populations, like the exponential models described in §2. Even those
are too simple, so in pratice people build libraries with more complex SFHs (eg, superimposing bursts
on a smooth ψ function). In the Bayesian framework, the library makes part of your prior.

Exercise 5.8 - A less ridiculous (∼ more realistic) library. Let’s reanalize B, G and R, this
time using a comparison library composed of models where the SFH is that dictated by the exponen-
tialy decaying SFRs of eq. 4. It’s not smart to vary t0 and τ separately (do you see why?), so let’s
parametrize the SFH in terms of t0 and θ ≡ τ/t0. The 2 other parameters in the grid will be AV and
Z. Use log t0/yr = 6, 6.2, . . . 10.2, 10.4 and log θ = −2,−1.8 . . . 0.4, 0.6. Use the 6 BC03-given values
of Z and the same AV = 0, 0.1 . . . 1.9, 2.0 grid for the V-band extinction. Notice that this grid has
one dimension more than the SSP-grid one, but Nlibrary is not so different (because of the choice of
sampling, which you may wanna play with).
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From here on the procedure is just as before: For each model, generate Mmod
b ’s for a 1M� SFH

and find the M? which best scales up the predicted SED to the observed levels. Tabulate the model
parameters pi = (t0,i, θi, Zi, AV,i) along with the corresponding M?,i (which can also be considered a
parameter, but not a grided-one), the χ2

i and the model Mmod
b,i for b = u, g, r, i, z. You may also want

to tabulate quantities which are not explicit parameters of the model like τi, the mass weighted mean
log age (〈log t〉M,i and its cousins), etc. These are all by-products of t0 and θ, but you might want to
obtain PDFs for them explicitly. With this big table, you can now compute the posterior probability
P (pi|D) and then marginilize it to obtain 1 and/or 2D PDFs for things you find interesting. This will
give you plenty plot-me-material for galaxies B, G and R.

There’re many things you can re-do with this new library. To be specific:

♣ Plot 1D PDFs for log t0, log θ, Z, AV and M?.

♣ Compute the mean and std deviation of log t0, log θ, Z, AV and M?. The latter 3 quantities were
also estimated in two different ways before (Table 2), so compare these results.

In the end, it’s illustrative to compare things you found with one library to what you find with
another one. Ultimately, this would be a comparison of results derived under different priors, since
libraries are priors. Overplotting the PDFs of log t (with the SSP-library) to the one for log t0 derived
here, for instance, is a good exercise. The same applies for Z, AV and M?. You might also want to
enlarge the exponentially decaying SFHs library by using finer grids (more models), and/or adding
the SSP models to the CSP ones. If the SSP models are realy bad approximations, they should weight
very little and thus affect little-to-nothing the results, . . .

5.3 More and less data

All the above was based on ugriz photometry, a rather limited data set. In practice, sometimes you’ll
have even less data and sometimes you’ll have more. Qualitatively, one expects that less data provides
less stringent contraints in the parameters, reflected in broader PDFs, while more data should have
the opposite effect. The exercises below give you the chance of checking this.

Exercise 5.9 - Less data: gri magnitudes. Re-do the analysis above, this time considering only
gri magnitudes. Specifically,

♣ Plot 1D PDFs for log t0, log θ, Z, AV and M?.

♣ Compute the mean and std deviation of log t0, log θ, Z, AV and M?.
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♣ Do the results match your expectations?

Exercise 5.10 - More data: ugriz + FUV, NUV & JHK magnitudes. What if you were given
data from the UV to the NIR? Re-do the analysis above, this time considering all the data in Table
1. Rλ filter transmissivities file available from our web dump.

♣ Plot 1D PDFs for log t0, log θ, Z, AV and M?. Note: It’s instructive to do these plots on top of
those of the previous exercise.

♣ Compute the mean and std deviation of log t0, log θ, Z, AV and M?.

♣ Do the results match your expectations?

This kind of exercise is also useful to help you figure out which bands are critical to contrains
this or that parameter, something which might help you design your survey or define sample selection
criteria out of existing data. You can also turn the problem around, and predict measurements in a
given band out of your analysis of data in other bands. Why woud you do that? At least for one
reason: So far we have treated the evolutionary synthesis models as perfect, but this is just not so.
Despite the progress, there are still phases of stellar evolution which are not fully comprehended.
TP-AGB stars are a well known example. Since these stars affect mostly the NIR range, extrapolating
results obtained from the UV-optical to the NIR, and doing so for libraries which employ different
recipes for TP-AGB stars, one might be able to invert the whole logic of this course and use galaxies
to learn about stars!

5.4 Even more data: ALHAMBRA & JPAS

Intermediate-narrow band photometric surveys are going to be in the headlines in the near future.
The COMBO17 survey is one example. ALHAMBRA is another one, and JPAS will take it to an
extreme. Presumably, the more data the better. Schoenell, in his MSc thesis, simulates JPAS data
and uses an approach similar to the one above, but replacing model SEDs by observed ones, using
libraries made up of actual SDSS galaxies, whose spectra were convolved with the 56 JPAS filters.
This is why we spent so much time on photometry in a spectral analysis course.

Much of the focous of these surveys is on deriving photometric redshifts, a re-born industry in the
past decade. But galaxies are more than their z, and these data are also useful to do things like you’ve
just done.
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5.5 The recent literature

Maaany articles in the literature do stuff similar to what you have just done. They were purposedly
not mentioned above, not to distract you from our DIY philosophy.

Kauffmann et al (2003), Brinchmann et al (2004), Gallazzi et al (2005), Salim et al (2007), Dye
(2008) are some examples I know. Walcher et al (2006, 2008) are also good examples, and quite didatic
too. http://xxx.lanl.gov/pdf/1208.6419.pdf is an example of SED fitting of star clusters in M31. Etc,
etc. You can find many references in Walcher et al (2010).

Exercise 5.11 - DIY literature search. Find 3 papers published in the past 5 years which make
use of the techniques we’ve studied.

6 Spectral Indices

Indices are quantities which are meant to summarize a spectrum. Colors like g − r, FUV −NUV or
V −K4 trace, well, colors. As you’ve learned yourself (§1), colors do give you a rough idea of what
kind of stellar populations you have (barring reddening effects, of course). As you’ve also seen in §1,
absorption line strengths also give you the the same of information, with the advantage that, because
of the small λ range, they are not affected by dust. The so called 4000 Å break, which looks like but is
not an actual discontinuity, gives you a very useful tracer of the typical age of the stellar population.

Being a full spectral analysis person, I do not do much index-base work. Because of this, plus
time-constraints and plain lazyness, we’ll do only a very basic excursion through index-wok, just to
give you an overall feeling of the thing. In the future this section should (hopefuly) grow to something
more useful.

6.1 Dn(4000) and HδA

Bruzual (1983) defined the 4000 Å break index as can be defined in

D(4000) =
〈F+〉
〈F+〉

=
(λ−2 − λ

−
1 )

(λ+2 − λ
−
1 )

∫ λ+2
λ+1

Fνdλ∫ λ+2
λ−1

Fνdλ
(31)

which you can see is the ratio of mean Fν fluxe in a λ+1 → λ+2 red window (in the denominator)
to the mean Fν in λ−1 → λ−2 blue window. Bruzual used (λ−1 , λ

−
2 ) = (3750, 3950) for the blue win-

dow and (λ+1 , λ
+
2 ) = (4050, 4250) for the red one. Balogh et al (1999) proposes narrower windows:

4Note the convention of mag in smaller-λ minus mag in larger-λ, such that the color index gets numerically larger as
the thing gets redder
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(λ−1 , λ
−
2 ) = (3850, 3950) and (λ+1 , λ

+
2 ) = (4000, 4100). This latter choice has been adopted in many

recent influential papers, most notably Kauffmann et al (2003). Because of the narrower widows, an

n subscript has been appended to D(4000):

Dn(4000) =
(4100− 4000)

(3950− 3850)

∫ 4100
4000 Fνdλ∫ 3950
3850 Fνdλ

=

∫ 4100
4000 λ

2Fλdλ∫ 3950
3850 λ

2Fλdλ
(32)

Notice that I’ve already changed from Fν to Fλ.5 Because of the narrow windows, few people
worry about the effect of reddening on Dn(4000), so we’ll do the same.

Let’s now define another index which become popular with SDSS papers: HδA. As other balmer
lines, an Hδ absorption line requires an electron in the n = 2 level, which only happens for temperatures
of order 10000 K. Hotter stars have all all the H ionized, whereas cooler ones have their HI in the
fundamental state. Since temperature is related to stellar mass (in the MS) and this to the age of an
SSP, Balmer line strengths have a non-monototic weak → strong → weak again behaviour, which is
what makes them interesting (and different from most other absorption lines).

The particular way of quantifying the strenght of a Hδ absorption we’ll chose is that of Worthey &
Ottaviani (1997). As usual in absorption line index definitions, one defines two side-bands (one to the
blue and the other to the red of the feature), and a central ”feature” band. For HδA the side bands
are at λ = 4083.50–4122.25 and λ = 4128.50–4161.00, while the feature band is λ = 4041.60–4079.75
Å. Quoting Worthey & Ottaviani: Absorption-feature indices are composed of measurements of rela-
tive flux in a central ”feature” bandpass and two flanking ”pseudocontinuum” bandpasses. . . Once the
average fluxes in the pseudocontinuum bandpasses are found, a line is drawn between their midpoints
to represent the ”continuum” from which an index is measured by integration within the ”feature”
bandpass; the index is then expressed in terms of an equivalent width.

To recap: Measure the mean Fλ in the flanking pseudo continuum bands and use them to define a
straight line Cλ = aλ+b continuum spectrum. Then compute rλ = (Fλ−Cλ)/Cλ, and do EW =

∫
rλdλ

over the feature band to obtain the EW of the line. Use the windows defined above and you’ll have
HδA.

It’s time to see what Dn(4000) and HδA are good for.

Exercise 6.1 - Following the definitions above, computeDn(4000) andHδA for the BC03/Chab/Padova1994
SSP spectra.

♣ Plot Dn(4000)× log t. Use a different color for each of the 6 Z’s.

5To be honest, I have never figure out whether Balogh, Kauffmann nor all the papers which use Dn(4000) do include
these λ2 terms (which come from Fν = Fλ|dλ/dν|), but this should make only a ∼ 4% difference.
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♣ Plot HδA × log t. Use a different color for each of the 6 Z’s.

♣ Plot HδA ×Dn(4000). Use a different color for each of the 6 Z’s. Overplot with filled circles the
values for log t = 6, 7, 8, 9 and 10 to given you a visual guide of how an SSP evolves in this diagram.

Exercise 6.2 - Repeat the exercise above for the BC03/Chab/Padova2000 SSP spectra to check how
things change with the choice of evolutionary tracks.

Exercise 6.3 - Repeat the exercise above for the models based on the Salpeter IMF. Do things change?
By how much?

6.2 Dn(4000)×HδA
The Dn(4000) × HδA diagram played a central role in Kauffmann et a’s analysis of SDSS galaxies.
Soon after that paper, much more ellaborate methods (based on full specral synthesis techniques) to
study stellar populations from the same data were published. Yet, the essence of what the data were
telling us was already capture with what we now see as a very simplistic way of analysing spectra.
The take-home-lesson is that it is well-worth to do a simple analysis! A more refined analysis may
give you more refined results, but it’ll hardly change the global picture in any significant sense.

How can one use Dn(4000) and HδA to infer stellar population properties? Guess what: Just as
you’ve done for photometric data in §5. In particular, with Bayesian techniques like those in §5.2. It’s
all really the same thing. Build your reference library, compute your chosen observables (magnitudes
in §5 but Dn(4000) and HδA now) for each model in your library, then compare your observed data
to each model and build your PDFs. Just as you did!

Well, there’s a minor not-exactly-like-it detail. Both Dn(4000) and HδA are (in thermodynamics-
lingo) ”intensive” quantities. They cannot telll you if the galaxy has 1 gram or 1011M�. But they can
tell you what is the mass-to-light ratio of a system, in any waveband. Kauffamen et al (2003) estimated
M/Lz from their Bayesian analysis of Dn(4000) and HδA, and then used the z-band photometry from
the SDSS to derive stellar masses and other ”extensive” quantities.

Measuring the Hδ absorption requires removing it’s nebular emission component, when present.
This is a tricky business6 we do not want to go into, so let’s keep the exercises below in a theoretical

6One way to do it is to measure stronger Balmer lines, like Hα and Hβ. Once you know the flux of these, you
can predict the emssion flux from Hδ, including a reddening correction. This flux can then be discounted from your
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world.

Exercise 6.4 - Use the library of exponential SFHs built in §5. To recall, the parameters in that
library were t0, θ ≡ τ/t0, AV and Z. For each model, compute Dn(4000) and HδA. We now want to
see how each of the library parameters (or things deduced from them, like mean ages or M/L ratios)
translate into a location in the Dn(4000)×HδA diagram.

This is a simple thing to do, but difficult to visualize results. Here’s one way to go about it. Call
x ≡ Dn(4000) and y ≡ HδA and pixelate the xy plane in a grid xk = x0 +k×∆x and yl = y0 + l×∆y.
Pick a generic parameter G; to fix ideas, consider G = log t0. For each (k, l) pixel you will have
m = 1 . . . Nk,l models in your library which produce x within xk±∆x/2 and y within yl±∆y/2—but
notice that many of the (k, l) will be empty. Looping over the xy grid (as we did before in §5 to build
2D PDFs) you can easily fill in a 3D array Gk,l,m which gives you the distribution of G-values ate each
xy pixel. To produce something you can plot, compute the 1st and 2nd moments of G, which will give

you 2D-maps of G and its std deviation σG = (G2 − G2
)1/2 as a function of x and y. You can use

robust statistics (median and some interpercentile range) if you prefer.
Once you’ve setup your scripts, do these images for different G’s. The plots should be read like

this: If σG is generally large (compare to the values of G) throughout the Dn(4000)-HδA diagram,
than G is not well constrained by these two indices, and vice versa. You should find both cases, ie,
G’s which are well constrained by a (Dn(4000), HδA) pair, and G’s which aren’t.

Note: What you just did is very similar to Kauffmann et al (2003). Look up her figures.

Exercise 6.5 - Plot Bayesian 1D-PDFs for G = log t0, log τ , Z, logM/L5635 and AV (always marking
the mean, the ±1σ, the median and the 16–84% percentile interval) for the following hypothetical
data sets:

♣ Dn(4000) = 1.3± 0.1 and HδA = (4± 1)Å.

♣ Dn(4000) = 1.3± 0.1 and HδA = (8± 1)Å.

♣ Dn(4000) = 2.0± 0.1 and HδA = (−1± 1)Å.

Obs: I haven’t done it, but I anticipate some results will be strange at first sight. . .

measured HδA.
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6.3 The synthesic domain

Pelat (1997) introduced several important concepts (little used or acknowledged in the litetature
though) useful in the analysis of galaxy data. One of them is the Synthetic Domain. He was thinking
about fitting the equivalent widths (Wλ) of absorption lines, but the concept is more general. You
can, for instance, apply it to any color-color diagram, or to the Dn(4000)-HδA diagram just discussed.

Suppose you want to describe a composite stellar systems in terms of convex combinations (ie,
linear combinations where the coefficients are ≥ 0 and add up to 1) of base elements, like SSPs. (This
is just a complicated way of stating the obvious fact that a composite stellar population is a sum of
SSPs, as used in eq. 3, for instance.) Say you have j = 1 . . . N? base elements. Then pretend that
only 2 of these base elements are present, and draw the corresponding mixture lines in you index-
index diagram. To do this, compute you indices supposing a fraction x of the light at some reference
wavelength comes from component j, so that 1− x comes from component k. Looping from x = 0 to
1 gives you the mixture line in the IA-IB index-index diagram. Do this for all N?(N? − 1) pair-wise
combinations and the result will be a messy diagram!

Messy, but useful. First, its outer contour gives you the synthetic domain, region in the IA-IB
The you can do .... Suppose you have N such elements. Their Wλ’s are Wλ,j , with j = 1 . . . N .

Suppose you are now interested in ...the combination of all pairs of base elements...

7 Full spectral fitting

spectral algebra .. convert ~x(λ1) to ~x(λ2)

light (~x) to mass (( ~µini and ~µcor) conversion
progapage uncertainty in light to mass... (use covariances?)

7.1 STARLIGHT

My starlight code (CF et al 2004, 2005, Mateus et al 2006; see manual @ www.starlight.ufs.br)
combines spectra from a base (usually SSPs, but it can be anything!) to produce a model spectrum Mλ

with best matches an observed spectrum Oλ. Ideally, the user should also supply an error spectrum
(ελ) and a bad-pixel-flag bλ (an integer which, when ≥ 2 informs that a pixel is bad by whatever
reason). Also, a mask spectrum mλ tells the code to ignore data in pre-defined spectral windows.
This mask is normally used to inform emission line windows, but it can be used to mask-away other
things, like regions where you know your base models are problematic, or faulty regions not accounted
for in the bλ bad-pixel-flag.

starlight inherits many of the ideas and conventions first put forward by Eduardo Bica (Bica 1988
and tons of following papers). In particular, it follows the convention of expressing the strength of a
given base component by its fractional contribution to the total light at a chosen reference/normalization
λ. This is a source of confusion, because what people are usually after (at least nowadays) is the (frac-
tional or absolute) mass associated to a given component. It is undertandable that people seek to
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find masses, but it’s very important to understand/realize that one sees light, not mass. This trivial
fact-of-life must not be overlooked. Because L and M relate in a highly non-linear way (L ∝ Mα in
stars, with α of order 3!), a tiny amount of light may end up translating to a lot of mass, and vice
versa.

Exercise 7.1 - Using the Padova1994/chab/m62 models, first determine lλ(t) for λ = 5635 Å.

!�j�! Use the best-SSP-fit feature and a sample of LRGs to find an age-redshift relation... ,,

!�j�! some of the exercises/challenges I gave them...

8 A taste of emission line analysis

This course is not about emission lines, but you should least have a rought idea of how to deal with
them and what they can tell you. This section aims to fill this gap through a series of highly simplified
hands-on exercises.

The file !�j�! contains starlight output files for 10 galaxies, whose distances and stellar masses

are listed in !�j�! . Your task is to measure Hβ, [OIII]λ5007, Hα, and [NII]λ6584, and use them to
derive a series of physical properties and diagnostics.

Exercise 8.1 - We 1st need to measure luminosities (L, in L�), the underlying continua (Cλ, in L�/Å)
and equivalent widths (W , in Å) for four emission lines: Hβ, [OIII]λ5007, Hα, and [NII]λ6584. Here’s
a script of how to do this:

1. Re-scale the observed (Oλ) and model (Mλ) spectra to units of L�/Å. To do this, first multiply
them by the normalization flux fobs norm (given in units of 10−17 ergs s cm−2 Å−1) and then by
4πd2, such that the end spectra are in units of L�/Å.

2. Compute the residual spectrum Rλ = Oλ −Mλ.

3. Measure emission line luminosities (L, in L�) integrating Rλdλ in adequate windows. If the
residual is systematically negative or positive in the neighbourhood of a line you may need to
account for this with a local ”residual continuum” to get a precise measurment. Alternatively,
you may want to fit a gaussian to each line (instead of integrating Rλdλ) and using its amplitude
and width to compute the integrated luminosity.

4. Measure the continuum Cλ at the central wavelength of each of the emission lines. This is usually
done defining narrow (a few tens of Å) bands on the blue and red sides of the line, computing
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luminosity [L�] continuum [L�/Å] eq. width = L/Cλ [Å]

Galaxy Hβ [OIII] Hα [NII] Hβ [OIII] Hα [NII] Hβ [OIII] Hα [NII]

. . .

. . .

the mean flux in each and interpolating linearly (Cλ = aλ+ b) between them to get the value of
Cλ at the central wavelength you want.

Tip: You may prefer to measure Cλ using the fitted (Mλ) rather than the observed (Oλ) spec-
trum, since Mλ is essentially problem free.

5. The equivalent width (W ) may be defined as the line luminosity divide by its continuum. (This
is not exactly the textbook definition, but it should not matter.)

♣ List your L’s, W ’s and C’s in a ”data” table like 1. Tables like these (though not in these units)
were common in the 80’s and 90’s, before the numer of lines grew to > or � 100.

In serious work you should also estimate the uncertainties in all these stuff. We’ll ignore errors in
this section, thoughg you’ll likely see whether they matter. . .

Exercise 8.2 - Nebular extinction. Recombination theory tells us that (except in exceptional cir-
cunstances) the ratio of Balmer lines is nearly independent of the detailed physical conditions (eg,
density and temperature) of the ionized gas. The Hα/Hβ ratio (sometimes called the ”Balmer decre-
ment”), in particular, should be 2.86.7 Look up you data table and you’ll see that this is generally
not the case! Barring gross errors, the reason is dust. If the nebula is seen through a screen of dust,
the observed luminosities are smaller than the intrinsic ones by

Lobsλ = Lintλ × 10−0.4Aλ ,

and since Aλ = AV qλ increases towards the blue, the observed Hα/Hβ ratio should be larger than
(Hα/Hβ)int = 2.86. Turn this around to show that

ANebV =
2.5

qHβ − qHα
log

(Hα/Hβ)obs
(Hα/Hβ)int

7This applies to nebulae excited by young stars. A slightly larger value (abot 3 or 3.1) applies if the ionizing source
is harder (like in an AGN) but we’ll overlook this ”detail” (and others!) here.
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This nebular extinction is the first property derived from your measurements. Naturally, you’ll need
to adopt a qλ law. Use the CCM law in this exercise. Sometimes you’ll obtain AV < 0 . . .

♣ Once you have ANebV , you can (and should) correct all the line luminosities. You can also do so for
the underlying contiinum luminosities, but that entails one further assumption, namely, that L’s and
Cλ’s are seen through the same column of dust. Does it sounds a reasonable thing to assume?

♣ What values of ANebV would change an observed Hα/Hβ ratio by 0.1, 0.2 and 0.3 dex?

♣ What values of ANebV would change an observed [OIII]/[NII] ratio by 0.1, 0.2 and 0.3 dex?

♣ What values of ANebV would change an observed [NII]/Hα ratio by 0.1, 0.2 and 0.3 dex?

Exercise 8.3 - SFR(Hα). In §3 we’ve seen how to estimate the SFR in the past ∼ 10 Myr using
the (extinction-corrected) Hα luminosity, so do this for our 10 galaxies.

Exercise 8.4 - Nebular metallicity: O/H. There are tons of ways to estimate the nebular met-
alicity (more precisely, oxygen abundances) from emission lines, and tons of caveats in this business.
To cut a long story short, let’s use just two illustrative ”strong-line-methods”, based on the ”N2” and
”O3N2” indices, defined as

N2 ≡ log
Lint[NII]

LintHα

O3N2 ≡ log
Lint[OIII]

Lint[NII]

In both cases we correct for reddening (thats what the int superscript means), but in practice the
correction ought to be neglibgible for N2. Oxygen abundances are usually quoted as 12 + logO/H
instead of O/H or (O/H)/(O/H)� . . . (why make it simple if we’re astronomers?). Pettini & Pagel
(2004) propose the following calibrations

12 + logO/H = 8.90 + 0.57×N2

12 + logO/H = 8.73− 0.32×O3N2
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Regarding the latter, Staśinska (2006) prefers

12 + logO/H = 8.55− 0.25×O3N2

There are many others (see Kewley & Ellison 2008, ApJ, 681, 1183) but these 3 will do it for now.
Apply all 3 to estimate the nebular metallicity of our 10 galaxies. Write the results both in terms of
12 + logO/H and units of (O/H)� = 4.9× 10−4.

Exercise 8.5 - Diagnostics diagrams. One of the major uses of emission lines nowadays is to classify
a galaxy as SF, Seyfert, LINERS, composite, . . . Classification is a typical obsession of astronomers—
sadly, an often overrated one. In any case, it’s good to know whether our emission lines are SF or
AGN like. If a galaxy has an AGN affecting its optical emission lines, the estimates of SFR and O/H
above are wrong! It’s thus good to know whether you’ve done such a mistake, and we’ll use dignostic
diagrams to check this.

1. Plot the galaxies in a BPT diagram: log [OIII]λ5007/Hβ versus log [NII]λ6584/Hα (Baldwin,
Phillips & Terlevich 1981).

2. Plot the galaxies in a WHAN diagram: WHα versus log [NII]λ6584/Hα (CF et al 2010, 2011).

♣ Check which galaxies are not bona-fide SF galaxies. Do so using the Kauffmann et al (2003) and
the Stasinska et al (2006) classification schemes for the BPT diagram, and the CF et al (2011) for the
WHAN diagram. Note that for each galaxy you’ll have 3 different classifications. (I can advance that
they’ll not be completely consistent. . . )

Exercise 8.6 - Putting all together. Wrap up the results of the above exercises in a table contain-
ing AV [Neb, SFR, 12 + logO/H (cf the 3 recipes outlined above), and the emission line classification
(cf. the Kauffmann, Stasinska & CF classification schemes).

♣ Plot 12 + logO/H versus the stellar mass M? (given for free in this section). Mark AGNs (whose
O/H estimates are surely wrong) with a different symbol. Overplot the mass-metallicity relation de-
rived in the famous Tremonti et al (2004) paper. What do you conclude?
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You’ve measured emission lines and used them to perform some basic diagnostics. You’ve also
done silly things on the way, just as we do in day-to-day spectral analysis. There’s of course much
much more to emission lines, but this is enough for our purposes.

9 Epiloge

10 References:

http://iopscience.iop.org/1538-3881/125/5/2348/fulltext/202203.text.html
http://www.roe.ac.uk/ifa/postgrad/pedagogy/2008 phillips.pdf

!�j�! ...
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