Laurent Pagani CNRS & Observatoire de Paris ¦က |ဗို

4

Answer on the back

0.8 µm (1 µm = 0.001 mm), and in radio waves

represented here, they are below 0.01 nm from 1 cm to 20 m. Gamma rays are not

(1 nm = 0.000001 mm).

wavelength. The sky is mainly transparent in

Transparency of the sky as a function of

Wavelength

the wavelengths of visible light, from 0.4 to

Which of these not detect

telescopes does photonss

detector (Auger

**

Gravitational waves

The Universe in my pocket

Cosmic raye

shower of light-emitting particles. the Earth's atmosphere, creating a they emit during their interaction with other. They are detected by the light energy. Their origin is poorly understood. of light and therefore have gigantic kinetic from the fusion of black holes with each travel at speeds very close to the speed They could come from supernovae or (protons, electrons, helium nuclei) that Cosmic rays are charged matter particles

shower of light rays.

cosmic ray with the atmosphere causing a

Artistic representation of the interaction of a

ASPERA/Novapix/L. Bret)

through a square kilometer on Earth cosmic rays which are very rare: only combines telescopes and particle can be captured by telescopes designed In very dark regions, this faint luminosity during an entire century. about one such cosmic ray passes detectors to detect the most energetic Auger experiment in Argentina which the HESS telescope in Namibia, or the to observe these light showers, such as

light showers that track cosmic rays.

00

Photo of H.E.S.S. II, a detector of visible

LIGO and VIRGO. by very sensitive instruments such as holes, has a very small amplitude when it the deformation of space-time around it two black holes with a visualization of Artistic representation of the fusion of reaches the Earth and is only detectable This deformation, huge near the black

DALL-E from OpenAl) (Image by Gianluca Inguglia generated by

particular shape of the signal that makes for the emitted waves to be detected by tuimp 18). **Predicted 100 years earlier by** Extremely energetic events such as the fusions of black holes and neutron stars that the physicist was convinced that fusion of two black holes are necessary current instruments. It is only the very it possible to extract it from the noise which cause movements much greater vibrations of the instrument's mirrors than the displacement caused by the detection of gravitational waves (see A. Einstein, their intensity is so weak passage of the wave). The numerous that detectors have observed since 2015 reveal a universe that was (due, in particular, to the residual 2015 was the year of the first they could never be detected. invisible until now. 13

ultra-violet, then X-rays and gamma Below red (0.8 μ m), there is infra-red we see in a rainbow but this is only a its corpuscular aspect. When we say behave as if they were waves. called photons which sometimes more. Beyond violet (0.4 µm), there is radio waves up to kilometric waves and which extends to around 300 µm then are located between 0.4 and 0.8 µm. light). The wavelengths of the rainbow related by $v \times \lambda = c$ (where c is speed of frequency, v, or by its wavelength, λ , Light is characterized by its vibration very small part of the light spectrum. 'light', we think of the visible light that electric effect and CCD cameras reveal light's wave aspect, while the photo-Interference and diffraction reveal Light is made of massless particles

7

S

electrons.

panels absorb grains of

color of the sky is

corpuscular nature of

An aspect of the

An aspect of the

wave nature of

ight: the blue

light: photovoltaic ight that tear off

atmosphere (see particles in the scattering of due to the sunlight by tuimp 24).

recover them and analyze their chemical composition.

shooting stars), while the largest ones

completely in the atmosphere (as

The smallest meteorites burn up

2500 m deep in the Mediterranean Sea monitor the occurrence of scintillations thousands of cameras immersed up to

ANTARES neutrino telescope;

(small flashes of light) caused by the interaction of a neutrino with water.

Credit: François Montanet

0

survive and reach the ground. We can

Answer

N

Mexico).

Observatory) and Stan Kurtz (from IRYA by Grażyna Stasińska (from Paris Observatory and the CNRS and reviewed This booklet was written in 2025 by

Laurent Pagani from the Paris

The Universe in my pocket No 43

These very numerous dust grains enter crosses the debris path left by comets the Perseids. The Earth's orbit regularly Cover image: Meteor shower known as

seem to come from the same direction. the atmosphere in groups, ignite, and

atmosphere.

particles of very high energy that are 3) Cosmic rays: ionized matter that hardly interact with matter.

revealed when entering the Earth's

what our eye perceives.

2) Neutrinos: very low mass particles

celestial messengers:

1) Light, which is much richer than

sends us. We know of 5 types of observing the messages that the sky system, we have to be content with explore the Universe. Apart from a few

space probes to explore the solar It is difficult to leave the Earth to

Large Teles

of the P

Meudon

VIRGO (@The virgo collab

tect

TUIMP Creative Commons franslation: StanKurtz

gamma rays, as in visible light, it's always Only Auger observes ultraviolet, X-ray or In radio, infrared, photons.

the asteroids themselves which retain

a certain memory of the state of the

solar nebula at the time of planet

formation, about 4.5 billion years ago.

the composition of the Moon, Mars or

provide us with direct information on

the latter case, the meteorites

following a collision with an asteroid. In

from the surface of Mars or the Moon

Mars and Jupiter, or rocks ejected

comets, collisions between asteroids

Meteorites can have several origins

Meteorites

see tuimp 11). **Dust left behind by**

in the asteroid belt located between

certain nuclear reactions. There are three massive muon and the tau. As they move neutrinos oscillate between these three mass. But it is so small that we have not flavors'of neutrinos, linked to the three flavors, which implies that they have a families of leptons, the best known of Veutrinos are particles produced by which is the electron, then the more yet managed to measure it.

even slowing. Some experiments manage of them pass through the Earth without out they allow us to probe inside the Sun emits a large number of neutrinos. Most to study and are still poorly understood interact with matter, they are difficult number of nuclear reactions in its core, to capture a few neutrinos, among the billions that shower the Earth at every moment. Because neutrinos hardly The Sun, due to the extremely high and supernovae.

0

S

5) Gravitational waves (see tuimp 18): the atmosphere to reach the ground

where they are collected.

largest survive the passage through 4) Meteorites (see tuimp 11): the

predicted by Einstein and detected in